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Abstract. X-ray fluorescence (XRF) analysis of core samples can provide high-resolution profiles of 
elemental contents of core samples. However, there are some limitations, such as the high capital cost of 
XRF equipment, the measurements can take several minutes to perform, and strict training and safety 
procedures are required when working with X-rays. Therefore, a cost-effective, rapid, simple method to 
predict profiles of elemental contents from core screening or well log data would be useful. The aim of this 
study was to predict elemental contents of iron, potassium and aluminium (all important components of 
permeability controlling clays for the studied samples) within shale and oil sand intervals of two Albertan 
test wells from combinations of rapid, high-resolution probe magnetic susceptibility measurements on 
slabbed core (using a small hand held probe) and well log data. This involved a machine learning approach 
that first created a training dataset relating XRF measurements to the probe magnetic and well log data. Two 
neural network algorithms were tested and compared for training this large dataset and the subsequent 
prediction of elemental contents: multi-layer perceptron (MLP) artificial neural networks (ANNs) and 2D 
convolution neural networks (2D CNNs). ANNs have proved useful in many petrophysical applications, and 
2D CNNs (which first convert the input data to images) have recently shown improved results over some 
other neural networks. The 2D CNNs and ANNs both produced excellent predictions of the elemental 
contents of iron, potassium, and aluminium, comparable to the measured XRF values, in large intervals of 
the two test wells (the 2D CNN predictors marginally out performed ANNs in some cases). Furthermore, 
predictions using much smaller training datasets also gave very similar results, indicating that limited 
representative training data can still provide excellent predictions, saving one time and cost. The presence or 
absence of the probe magnetic susceptibility data particularly influenced the prediction of the elemental iron 
contents. In the absence of the probe magnetics, the performances of the 2D CNN and ANN iron content 
predictors in both test wells was somewhat reduced. The probe magnetic susceptibility results are very 
sensitive to small amounts of minerals containing iron (such as siderite and magnetite) and demonstrated the 
usefulness of the probe magnetic data for predicting iron content. These machine learning predictors are 
complementary to XRF measurements, since we initially use some representative XRD data to train the 
predictors. However, once we have trained good predictors we can rapidly and cheaply predict the 
elemental contents throughout large intervals from probe magnetic and well log data. 

1 Introduction  

X-ray fluorescence (XRF) analysis of core samples 
has provided a high-resolution and less destructive 
means of characterizing the elemental contents of rocks, 
including unconsolidated core samples [1-4]. However, 
there are some limitations to XRF techniques. For 
instance, the method is expensive as the cost of XRF 
equipment ranges from $50,000 - $100,000 US. Also, 
each measurement takes several minutes to perform. 
Another limitation is that most commercial XRF devices 
require some adjustments to measure the elemental 
contents of earth materials with fewer than eleven 
elements [5]. As a result of these and other limitations, it 

would be useful to provide a cost-effective and rapid 
method that can establish a relationship between XRF 
elemental contents and probe core screening data or well 
log data. One way of doing this is to relate measured 
XRF elemental contents on some representative samples 
with probe core screening and/or well log data using 
neural networks (NNs), in order to train predictors that 
can subsequently provide profiles of elemental contents 
over large intervals from probe core screening and/or 
well log data rapidly and cheaply. This study aimed to 
produce predictors of elemental contents from high-
resolution probe magnetic susceptibility measurements 
on slabbed core and/or well log data that were trained in 
combination with some initial XRF measurements. Well 
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log data are readily available from most wells, and 
magnetic probe data can be rapidly (each measurement 
can be made in a few seconds) and cheaply measured on 
rock cores using a small portable MS2E probe device 
[4]. The magnetic probe equipment (the probe sensor 
and recording meter) is relatively inexpensive, with both 
pieces of equipment costing about $4,500 US in total. 
Hence, if one can successfully predict elemental contents 
from a combination of high-resolution, rapid, cheap 
probe magnetic susceptibility core measurements and/or 
well log data, it would reduce the cost and time that 
would otherwise be spent making expensive and time 
consuming XRF measurements.  

Two types of neural networks were used for data 
training (relating XRF data to probe magnetic and well 
log data) and subsequent prediction of elemental 
contents: two-dimensional convolution neural networks 
(2D CNNs) and multi-layer perceptron (MLP) artificial 
neural networks (ANNs). Zhong et al. [6] showed that 
CNNs could be applied to solve regression problems. 
They used five well log parameters as inputs to the 
network and their CNN architecture was comprised of 
two convolution layers, two fully connected layers, and 
one output layer representing the predicted permeability. 
Their findings showed that the CNN predictors 
performed better than the three other neural network 
methods applied in the study. Motivated by these results 
and other related research [7], we applied a similar 
approach to predict elemental contents from probe 
magnetic and well log data. The network architectures 
used in our research contain more convolution layers 
than those employed by [6], due to the complexities of 
the problem at hand. We chose 2D CNNs for various 
reasons. Firstly, our dataset is two-dimensional. Each 
row represents a training instance while each column 
represents a geologic parameter (probe magnetic and 
well log data). Secondly, 2D CNNs are more efficient 
and cost-effective than 3D CNNs. Multi-layer perceptron 
ANNs were also used for comparison, since they have 
previously been successfully applied to predict various 
petrophysical parameters, [e.g., 8-12].  

Data from two oil sands wells (Well 02 and Well 03) 
in northern Alberta, Canada, was used in this study. Well 
02 is located in the northern region of Cold Lake, while 
Well 03 is located in the northeastern region of the 
Athabasca oil sands near Fort McMurray.  

2 Dataset and Methods  

2.1 Dataset  

A large dataset was used for this study comprising well 
log data, high-resolution low field probe volume 
magnetic susceptibility measurements on slabbed core, 
and high-resolution probe XRF measurements on 
slabbed core from the two wells.  The available well log 
data included the total gamma ray, spectral gamma ray, 
and spontaneous potential. The magnetic susceptibility 
measurements were taken using a Bartington MS2E 
probe [4], and the XRF measurements using a a portable 
XRF analyzer, the Thermo Scientific Niton XL3t [13]. 

Three main lithological units were identified in Well 03: 
shale, inclined heterolithic stratification (IHS) beds 
comprising interbedded sand and clay, and clean sand 
[4]. Well 02 had two main lithological units: shale and 
clean sand [4]. Both wells were drilled in the McMurray 
formation in the Mannville Group of the Western 
Canadian Sedimentary Basin (WCSB). The data from 
both wells were randomized, and initially 70% of the 
data from each well were combined to train the 
predictors. The predictors were then tested on the 
remaining 30% of the data from Well 02 and Well 03. 
Subsequently, predictors were trained on just 30% of the 
data from each well, and tested on the remaining 70%. 
The purpose of this was to see whether a smaller (but 
still representative) training dataset can provide good 
predictions comparable to using the much larger training 
dataset. The advantage of using a smaller training dataset 
is that it is more time and cost-effective, both in terms of 
initially obtaining the measurements for the training 
data, and subsequently for running the neural network 
software. 

2.2 2D CNN Training and Architecture for 
Predicting Elemental Contents  

The input data to a CNN has a grid-like topology and 
can be presented as 1D, 2D or 3D data pixels. For this 
reason, CNNs are mainly used to solve classification 
problems, however they can also be used to solve 
regression problems as in the present study. One way to 
do this is to first convert the input data to images. 2D 
CNNs were most appropriate for the present study, as 
mentioned above, and so the probe magnetic and well 
log data used to train the networks were converted to 
black and white images before being fed into the 
networks. These images effectively capture spatial 
patterns by sliding a 2D filter (called an image kernel) 
over the image and detecting local features. This is 
particularly useful for black and white images, where 
each pixel only represents one value, as opposed to 
colour images where each pixel is composed of three 
separate colour channels. The steps to convert discrete 
input variables to images are described below: 
1. The input variables were converted from decimal to 
binary strings (feature strings). The IEEE 754 floating-
point format (single-point precision) was used to convert 
these input variables to binary strings [14]. IEEE 754 
single precision is a standard for representing floating-
point numbers in computers. It uses 32 bits to represent a 
floating-point number, with 24 bits representing the 
mantissa and 8 bits representing the exponent. Figure 1 
shows the details of the conversion process. Figure 1 (a) 
shows the probe magnetic and well log values (decimal 
numbers). Figure 1 (b) shows the 32-bit binary string for 
each input variable. 
2. Next, we converted the binary strings to black and 
white images (Figure 1 (c)) using a Python code. 
3. Figure 1 (c) shows the generated images stacked to 
create feature images, and Figure 1 (d) shows a 
schematic of the feature images at different depths.  
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The network architecture used in this research was 
inspired by the VGG16 neural network [15]. This 
consists of input data (images), convolution layers, 
pooling layers, fully connected layers (each fully 
onnected layer comprising a certain number of neurons), 
and the output parameter that is predicted. The VGG16 
neural network has recently been used across different 
research areas [e.g., 16, 17]. Due to the dimensions of 
our images (maximum of 32 x 6 pixels, Figure 1 (c)), we 
only implemented a part of the VGG16 architecture in 
this research. We used four convolution layers. The first 
convolutional layer had 64 filters with a 3 × 3 pixel 
image kernel (e.g., the second figure from the left in 
Figure 1 (e)) and a stride distance of 1, which means it 
moves the kernel one place to the right over the input 
image. The input data were fed into the convolution 
layer as dimension m × n × c pixel arrays, where the 
image width m = 32, the image height n = 6, and the 
“colour” channel c = 1 for a black and white image. As 
the image kernel scans over the input image, its values 
are multiplied by the pixel values of the normalized 
image (third and fourth figures from the left in Figure 1 
(e)). This process is referred to as elementwise 
multiplication. The products are then summed and stored 
as feature strings in a specific location. This process is 
repeated until the kernel scans the entire image, and the 
values are stacked together to produce a feature image 
(Figure 1 (c)). This generated 64 feature images per each 
instance of the training sample. To avoid losing 
information along the borders, we padded our images 
with zeros on all four borders (a schematic example for a 
smaller image is shown in the far-left part of Figure 1 
(e)). The second convolution layer had the same features 
as the first, i.e. 64 filters with a 3 × 3 pixel image kernel 
and a stride distance of 1. A pooling layer (i.e., 
downsampling layer) with a 2 × 2 pixel maximum 
pooling image kernel, and a stride distance of 2 and no 
padding, was then applied after the second convolution 
layer. The function of the pooling layer was to reduce 
the dimensions of the feature images. This is important 
as it increases efficiency by reducing the training time as 
the data size is reduced, and it helps to prevent 
overfitting of the training data. This reduced the 
dimensions of the images from 32 x 6 to 16 x 3 pixels 
(for each of the 64 feature images). The third and fourth 
convolution layers had 128 filters, each with a 3 × 3 
pixel image kernel and a stride distance of 1, and 
produced 128 feature images each. A pooling layer with 
a 2 × 2 pixel maximum pooling image kernel with a 
stride distance of 2 and no padding was applied after the 
fourth convolution layer, reducing the dimensions to 8 x 
1 pixels (for each of the 128 feature images). The output 
was then fed into two fully connected layers, consisting 
120 and 70 neurons respectively. The optimum number 
of neurons in each layer was determined experimentally 
by trial and error. The fully connected layers work like a 
multilayer perceptron (MLP) model in which the output 
neurons from one layer are connected to the next, and so 
on. The output from each convolution layer and fully 
connected layer was achieved using a rectified linear unit 
(ReLU) [18]. The final output used a linear activation 

function to give a continuous output of iron, potassium 
or aluminium content.  

Several different cases (different combinations of the 
probe magnetic susceptibility and well log data) were 
considered for training the predictors. Python was used 
to write the codes, along with other open source 
supporting deep learning libraries TensorFlow [19] and 
Keras (https://keras.io/), to train the 2D CNN predictors, 
while the Scikit Learn library [20] was used to carry out 
data analysis, like randomization and metrics evaluation.  

The K-fold cross-validation approach was used to 
train the 2D CNN predictors. It involves randomly 
splitting the dataset into different folds. In this study, 
each training dataset was divided into 10 different folds 
with an equal number of data points (probe XRF, probe 
magnetics and well log values) per fold. Predictors were 
initially trained on 70% of the entire dataset, and 
subsequently on 30% of the entire dataset to test whether 
a smaller but representative training dataset could also 
perform well. We included a random seed in the code to 
ensure that the results were repeatable. For each round of 
training, the predictors were trained on 9 folds, while 1 
fold was used to validate the predictor's performance. At 
the end of the training, the predictors obtained for the 10 
different folds were averaged across all folds, and this 
was used to make predictions on the test datasets. Early 
stopping was also used during training to prevent 
overfitting. The early stopping algorithm monitors the 
training of each fold and stops the training if the 
validation loss continues to increase for five consecutive 
iterations (while the training loss decreases). The 
coefficient of determination (R2), mean absolute error 
(MAE), root mean squared error (RMSE), standard 
deviation of the error (residual standard deviation 
(RSD)) and the mean error (ME) (also called the 
standard error of the mean) between the measured and 
predicted parameters for the test datasets, were used to 
evaluate the performance of the predictors on the test 
datasets.   

2.3 ANN Training and Architecture for Predicting 
Elemental Contents  

The data from Wells 02 and 03 were also used to train 
multi-layer perceptron ANNs. The main difference was 
that the inputs to the ANN predictors were decimal data 
instead of images for the 2D CNN predictors. Python 
was again used to write the codes, along with 
TensorFlow [19] and Keras, to train the ANN predictors, 
while the Scikit Learn library [20] was used to carry out 
data analysis. The ANNs were trained using identical 
cases of magnetic probe and well log data to the 2D 
CNN cases. As before, the datasets from both wells were 
randomized and divided into training and test datasets 
similar to the 2D CNN training and testing. Different 
architectures were used to train the ANNs, using multi-
layer feed-forward networks. There is no rule of thumb 
for choosing the number of hidden layers and artificial 
neurons. However, care must be taken as too many 
hidden layers can cause overfitting of the training data. 
We experimented with different numbers of hidden 
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layers and discovered that two or three hidden layers 
worked best for all the predictions. 10, 7, and 5 artificial 
neurons were used where three hidden layers were 
required to make predictions. 10 and 7 artificial neurons 
were used with two hidden layers in some instances, and 
7 and 5 artificial neurons in other training instances. The 
output layer had one neuron corresponding to the 
predicted elemental contents (iron, potassium, or 
aluminium). The ANN predictors were also trained using 
the K-fold cross-validation approach. The data were 
randomized and divided into 10 folds. The ANN 
predictors were trained on 9 folds per each round of 
training, while 1 fold was used to validate the predictor's 
performance. Again, the predictors trained for the 10 
different folds were averaged across all folds, and this 
was used to make predictions on the test datasets. 
Similar evaluation metrics to those applied to the 2D 
CNNs were also used to evaluate the performance of the 
ANN predictors on the test datasets. 

3 Results and Discussion 

3.1 2D CNN Results and Discussion 

Table 1 summarizes the results obtained for predicting 
iron content (cases 1–5). All “a” cases (in green type in 
Table 1) represent cases where 70% of the entire dataset 
was used to train the predictors, whereas all “b” cases (in 
black type in Table 1) represent cases where 30% of the 
entire dataset was used to train the predictors. The table 
gives the values of R2, MAE, RMSE, RSD, and ME 
between the measured and predicted parameters for the 
training and test datasets. As expected, the predictors 
performed excellently on all cases involving the training 
dataset with high R2 values and low errors. 

Significantly, the predictors performed almost 
equally well on the test data in Wells 02 and 03. For 
iron, the predictors gave R2 values ranging from 0.83 to 
0.99 for cases 1–4. Case 5, which was trained only on 
the well log data, showed somewhat lower R2 values of 
0.64 to 0.89 compared to cases 1–4, whilst the MAE and 
RMSE were slightly higher. The lower performance of 
the predictors in the absence of probe magnetics as an 
input is likely due to the strong magnetic susceptibility 
of iron containing minerals (such as the ferrimagnetic 
mineral magnetite, Fe3O4, and the paramagnetic 
carbonate mineral siderite, FeCO3). Hence, the absence 
of the probe magnetic data for cases 5a and b likely 
impacted the performance of the predictors. 

For all cases, the results of the predictors trained with 
70% of the entire dataset marginally outperformed those 
trained with 30%. The R2 values were either the same or 
marginally higher, and the MAE and RMSE values were 
generally slightly lower for the predictors trained with 
70% of the entire dataset. Nevertheless, the predictors 
trained on 30% of the entire dataset still performed very 
well, demonstrating that these elemental contents can be 
predicted from minimal representative training data. 
Note, however, that they are not identical situations, as 
the predictors trained on 70% of the entire dataset only 
test the remaining 30%, whereas the predictors trained 

on 30% of the entire dataset test the remaining 70%, so 
the R2 and error values are derived from different 
numbers of data points. 

Figure 2 (a) displays a crossplot of the measured 
XRF (vertically averaged every 0.3048 m = 1ft) versus 
the 2D CNN predicted elemental iron contents for case 
1a (test Well 03) trained on 70% of the entire dataset. 
The coefficient of determination R2 of 0.99, MAE of 
0.10, and RMSE of 0.13 demonstrated excellent 
predictions in this test well. Also, the predicted and 
measured iron content followed the same trend with 
depth (Figure 2 (b)) for the entire study interval. One 
notable feature of the depth plot is that the 3 main 
lithological units (shale, IHS beds, and clean sand 
interval) are clearly apparent. The shale interval 
generally has the highest iron contents. The IHS beds 
have intermediate iron content values, lower than the 
shale and slightly higher than the clean sand interval 
below. Figures 2 (c) and (d) show the crossplot and the 
depth profile comparing the XRF measured and 2D 
CNN predicted iron content values for case 1b (test Well 
03) trained on 30% of the entire dataset. The predictors 
were again very good, with an R2 value of 0.97, MAE of 
0.13, and RMSE of 0.20. Note that since for Figures 2 
(a) and (b) 30% of the total dataset is tested, whereas for 
Figures 2 (c) and (d) 70% of the total dataset is tested, 
there are a larger number of data points in Figures 2 (c) 
and (d).  

We also made detailed comparison tables and figures 
for aluminium and potassium contents, but due to the 12 
page limit of this paper we’re unable to present 
everything here and instead will summarise the key 
results and show some representative examples. The 
performance of the predictors on the test wells for 
aluminium was excellent for all cases, with R2 values 
ranging from 0.91 to 0.96 for test Well 02 and 0.85 to 
0.96 for Well 03. The error values were again low (MAE 
ranged from 0.28–0.42 in test Well 02 and 0.22–0.40 in 
test Well 03, whilst RMSE ranged from 0.37–0.56 in 
Well 02 and 0.27–0.50 in Well 03). The absence of 
probe magnetic data for cases that were just trained on 
well log data did not have a detrimental effect on 
predicting aluminium elemental contents in this case, 
which was expected since aluminium does not have a 
high magnetic susceptibility signal (compared to iron). 
Figure 3 (a) shows a crossplot of the XRF measured 
(vertically averaged every 0.3048 m = 1ft) versus the 2D 
CNN predicted aluminium contents trained on probe 
magnetics and all available well log data for test Well 03 
(trained on 70% of the entire dataset). A coefficient of 
determination R2 of 0.96, MAE of 0.22 and RMSE of 
0.27 were obtained. Figure 3 (b) shows the associated 
depth profile of the XRF measured and 2D CNN 
predicted elemental aluminium contents. The predicted 
aluminium contents follow the trend of the measured 
values in most of the studied interval. Figures 3 (c) and 
(d) show the corresponding crossplot and depth profile 
comparing the XRF measured and 2D CNN predicted 
values for an identical case in test Well 03, with the only 
difference being that the predictor was trained on just 
30% of the entire dataset. The predictors again did well 
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in predicting the aluminium content, with an R2 value of 
0.88, MAE of 0.33, and RMSE of 0.45. 

Similarly, the performance of the predictors on the 
test wells for potassium was excellent for all cases, with 
R2 values ranging from 0.91 to 0.96 for test Well 02 and 
0.83 to 0.93 for Well 03. The error values were also low 
(MAE ranged from 0.07–0.12 in test Well 02 and 0.08–
0.12 in test Well 03, whilst RMSE ranged from 0.10–
0.16 in both Well 02 and Well 03). Figure 4 (a) shows a 
crossplot of the XRF measured (vertically averaged 
every 0.3048 m = 1 ft) versus the 2D CNN predicted 
potassium contents trained on probe magnetics and all 
available well log data for test Well 02 (trained on 70% 
of the entire dataset). A coefficient of determination R2 
of 0.96, MAE of 0.07 and RMSE of 0.10 were obtained. 
The depth plot (Figure 4 (b)) showed a good agreement 
between the XRF measured and predicted potassium 
contents for the study interval, and clearly differentiated 
the two main lithological units (shale and clean sand) in 
Well 02. The shale interval generally has higher 
potassium content, whereas the clean sand interval has 
lower potassium content The interval between 380.50–
389.60 m was missing core. Figures 4 (c) and (d) show 
the corresponding crossplot and depth profile comparing 
the XRF measured and 2D CNN predicted values for an 
identical case in test Well 02 with the only difference 
being that the predictor was trained on 30% of the entire 
dataset. An R2 value of 0.93, MAE of 0.10, and RMSE 
of 0.14 were obtained. 

3.1 ANN Results and Discussion 

Overall, the performance of the ANN predictors was 
either equally as good or very slightly lower than that of 
the 2D CNN predictors for identical cases. For example, 
iron content predictions for equivalent cases 1-4 gave 
ranges for the following parameters: R2 0.86–0.93, MAE 
0.28–0.41, and RMSE 0.44–0.85 for test Well 02, and R2 
0.93–0.98, MAE 0.12–0.18, and RMSE 0.16–0.29 for 
test Well 03. For case 5 where the predictors were 
trained solely on well log data (without input from probe 
magnetic susceptibility) the R2 values were lower and 
the errors higher as follows: R2 0.54–0.69, MAE 0.61–
0.71, and RMSE 0.94–1.18 for test Well 02, and R2 
0.74–0.86, MAE 0.29–0.38, and RMSE 0.39–0.57 for 
test Well 03. This again demonstrated the importance of 
including probe magnetic susceptibility training data for 
prediction of iron contents. 

Aluminium content predictions for equivalent cases 
1-5 gave ranges for the following parameters: R2 0.92–
0.94, MAE 0.27–0.39, and RMSE 0.38–0.50 for test 
Well 02, and R2 0.70–0.92, MAE 0.29–0.45, and RMSE 
0.43–0.68 for test Well 03. The absence of probe 
magnetic susceptibility data for case 5 did not have any 
significant effect on the results for Well 02 compared to 
the prediction of iron contents, although the lowest R2 
value and highest error for aluminium content prediction 
was for case 5 in Well 03 (but lower than the equivalent 
values for case 5 for iron prediction). 

Potassium content predictions for equivalent cases 1-
5 gave ranges for the following parameters: R2 0.89–

0.95, MAE 0.09–0.14, and RMSE 0.11–0.17 for test 
Well 02, and R2 0.80–0.92, MAE 0.09–0.12, and RMSE 
0.10–0.15 for test Well 03. Again, the absence of probe 
magnetic susceptibility data for case 5 did not have as 
significant effect on the potassium results compared to 
the prediction of iron contents. Figure 5 (a) shows a 
crossplot of the XRF measured (vertically averaged 
every 0.3048 m = 1 ft) versus the ANN predicted 
potassium contents trained on probe magnetics and all 
available well log data for test Well 02 (trained on 70% 
of the entire dataset). A coefficient of determination R2 
of 0.95, MAE of 0.09 and RMSE of 0.11 were obtained. 
The depth plot (Figure 5 (b)) showed a good agreement 
between the XRF measured and predicted potassium 
contents. Figures 4 (c) and (d) show the corresponding 
crossplot and depth profile comparing the XRF 
measured and ANN predicted values for an identical 
case in test Well 02 with the only difference being that 
the predictor was trained on 30% of the entire dataset. 
An R2 value of 0.94, MAE of 0.11, and RMSE of 0.14 
were obtained. Comparisons between Figures 4 and 5 
show that both the 2D CNN and ANN predictors give 
very similar results for potassium contents.  

4 Conclusions 

The following overall conclusions can be drawn: 

1. Two types of neural network predictors (2D CNN and 
ANN) were both capable of producing excellent 
predictions of elemental contents of iron, potassium, and 
aluminium (comparable to measured XRF values) from 
input data comprising probe magnetic susceptibility and 
different combinations of well log data in two test wells.  
2. Cases where the predictors were trained on 70% of the 
entire dataset appeared to give slightly better predictions 
than those trained on 30% of the entire dataset in terms 
of the coefficient of determination (R2), mean absolute 
error (MAE), and the root mean squared error (RMSE) 
between the neural net predicted and XRF measured 
elemental contents. Nevertheless, the predictors trained 
on just 30% of the dataset still gave excellent 
predictions, demonstrating that limited representative 
training data can still provide excellent predictions, 
saving one time and cost. Note that direct comparisons 
between the predictors trained on the different amounts 
of data should be treated with some caution, since the 
predictors trained on 70% of the dataset were tested on 
the remaining 30%, whereas the predictors trained on 
30% of the dataset were tested on the remaining 70%. 
3. The 2D CNN predictors marginally outperformed the 
ANN predictors in some, but not all, cases. 
4. The presence or absence of the probe magnetic 
susceptibility data influenced the prediction of the 
elemental iron contents in both test wells. In the absence 
of the probe magnetics, the performance of the 2D CNN 
and ANN predictors in test Well 02 and 03 was 
significantly reduced. The probe magnetic susceptibility 
results are very sensitive to small amounts of minerals 
containing iron (such as magnetite and siderite, where 
magnetic susceptibility is high) and demonstrated the 
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usefulness of the probe magnetic data for predicting iron 
content.   
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Fig. 1. Schematic diagram of the data conversion process, and 2D convolution process: (a) decimal data, (b) the 32-bit string for each input variable, (c) conversion of the binary string into black and 
white images, which are stacked together to generate a feature image, (d) the feature images at different depths, (e) schematic diagram of the 2D convolution process. 
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Table 1. Summary of the performances of the 2D CNN iron content predictors using 70% (green type) and 30% (black type) training data from the entire dataset, and tested on Well 02 and Well 03 
(using 30% of the data from each test well when the predictors were trained on 70% of the entire dataset, and using 70% of the data from each test well when the predictors were trained on 30% of 
the entire dataset). The predictors were based on combinations of the different probe (vertically averaged every 0.3048 m = 1ft) and well log measurements.  

 Training dataset Testing on Well 02 Testing on Well 03 

Input parameters R2 MAE RMSE R2 MAE RMSE RSD ME R2 MAE RMSE RSD ME 

Case 1a: probe magnetic 
susceptibility and all available 
well logs 

0.99 0.09 0.12 0.95 0.24 0.36 0.36 0.026 0.99 0.10 0.13 0.12 0.011 

Case 1b: probe magnetic 
susceptibility and all available 
well logs 

0.99 0.11 0.15 0.90 0.33 0.55 0.56 0.026 0.97 0.13 0.20 0.20 0.012 

Case 2a: probe magnetic 
susceptibility, total GR and SP 0.99 0.11 0.16 0.93 0.26 0.38 0.37 0.027 0.98 0.09 0.13 0.12 0.011 

Case 2b: probe magnetic 
susceptibility, total GR and SP 0.99 0.12 0.16 0.86 0.39 0.66 0.66 0.030 0.94 0.16 0.28 0.26 0.016 

Case 3a: probe magnetic 
susceptibility and total GR 0.98 0.13 0.20 0.91 0.27 0.41 0.41 0.030 0.97 0.14 0.21 0.19 0.018 

Case 3b: probe magnetic 
susceptibility and total GR 0.94 0.25 0.40 0.83 0.43 0.72 0.71 0.033 0.90 0.21 0.34 0.32 0.020 

Case 4a: probe magnetic 
susceptibility and spectral GR 1.00 0.09 0.11 0.93 0.25 0.41 0.41 0.030 0.97 0.11 0.17 0.16 0.016 

Case 4b: probe magnetic 
susceptibility and spectral GR 0.99 0.13 0.18 0.87 0.40 0.66 0.66 0.030 0.95 0.15 0.23 0.22 0.013 

Case 5a: all available well logs 0.99 0.12 0.17 0.84 0.39 0.63 0.63 0.046 0.89 0.21 0.33 0.33 0.032 

Case 5b: all available well logs 0.97 0.19 0.30 0.64 0.55 1.03 1.03 0.047 0.68 0.31 0.61 0.60 0.036 
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Fig. 2. (a) and (c) Crossplots of the XRF measured (vertically averaged every 0.3048 m = 1 ft) versus the 2D CNN predicted iron 
contents trained using the probe magnetics and all available well log data and tested on Well 03 (Cases 1a and 1b in Table 1 trained 
using (a) 70% and (c) 30% of the total dataset respectively). (b) and (d) Corresponding variations with depth of the XRF measured 
and 2D CNN predicted iron contents. Note that for (a) and (b) 30% of the total dataset is tested, whereas for (c) and (d) 70% of the 
total dataset is tested, hence the larger number of points in (c) and (d). Uncertainties in the measured XRF values are less than the 
plotted points. 
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Fig. 3. (a) and (c) Crossplots of the XRF measured (vertically averaged every 0.3048 m = 1 ft) versus the 2D CNN predicted 
aluminium contents trained using the probe magnetics and all available well log data and tested on Well 03 (cases trained using (a) 
70% and (c) 30% of the total dataset respectively). (b) and (d) Corresponding variations with depth of the XRF measured and 2D 
CNN predicted aluminium contents. Note that for (a) and (b) 30% of the total dataset is tested, whereas for (c) and (d) 70% of the 
total dataset is tested, hence the larger number of points in (c) and (d). Uncertainties in the measured XRF values are less than the 
plotted points. 
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Fig. 4. (a) and (c) Crossplots of the XRF measured (vertically averaged every 0.3048 m = 1 ft) versus the 2D CNN predicted 
potassium contents trained using the probe magnetics and all available well log data and tested on Well 02 (cases trained using (a) 
70% and (c) 30% training data respectively). (b) and (d) Corresponding variations with depth of the XRF measured and 2D CNN 
predicted potassium contents. Note that for (a) and (b) 30% of the total dataset is tested, whereas for (c) and (d) 70% of the total 
dataset is tested, hence the larger number of points in (c) and (d). Uncertainties in the measured XRF values are less than the plotted 
points. 
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Fig. 5. (a) and (c) Crossplots of the XRF measured (vertically averaged every 0.3048 m = 1 ft) versus the ANN predicted potassium 
contents trained using the probe magnetics and all available well log data and tested on Well 02 (cases trained using (a) 70% and (c) 
30% of the total dataset respectively). (b) and (d) Corresponding variations with depth of the XRF measured and ANN predicted 
potassium contents. Note that for (a) and (b) 30% of the total dataset is tested, whereas for (c) and (d) 70% of the total dataset is 
tested, hence the larger number of points in (c) and (d). Uncertainties in the measured XRF values are less than the plotted points.  
 

 
 


