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Abstract. Modern 3D imaging provides a window to the microstructure of rocks, soil, and other porous 
materials. Current advances in image characterization, image-based simulation, and machine learning can 
improve the prediction of transport properties in porous media, and both powerful and easy to use tools and 
curated datasets are required to facilitate prediction of transport processes. The Digital Rocks Portal (DRP) 
is an open-science portal for managing, preserving, and analysing porous media imaging data. Implemented 
within the Texas Advanced Computing Center (TACC) open science research cyberinfrastructure, the portal 
ascribes to FAIR data principles and connects curated datasets to simulation and analysis tools in a high-
performance computing environment (HPC). In this paper we present changes to the portal including new 
branding, updates in its metadata model, interface design, workflows, and applications. The new set of 
Python-based applications will be used within the portal in connection to DRP’s published datasets or 
independently as open source published software, and we describe how our new workflows sample 
“competent” subsets best suited for simulation, machine learning, and visualization tools. In particular, we 
detail the connection to the open-source lattice Boltzmann method solver LBPM. Finally, we present citation 
analyses of papers reusing data from DRP and how the findings informed the improvements to the portal’s 
user interface and tools as well as a discussion on the portal’s sustainability. The updated portal, which will 
be renamed Digital Porous Media Portal (DPMP), will help the research community reduce data preparation 
and post-processing efforts leading to innovations in subsurface porous media and other energy storage 
materials.  

1 Introduction 
Computed tomography (CT) and micro-computed 
tomography (μCT) are now applied routinely to acquire 
three-dimensional images that reveal the structure of 
geologic materials on different length scales. Beyond 
observation and characterization, it allows simulation and 
thus understanding of mechanisms that directly impact 
larger scales such as in sedimentary sequences, aquifers, 
and reservoirs. Experimental imaging has emerged as a 
leading approach for the study of multiphase flow in 
porous media [1–3] including entrapped non-wetting 
phases [4–8], three-fluid-phase systems [9], and the 
dissolution of an entrapped non-wetting phase [10]. While 
μCT is one of the most common imaging modalities to 
produce detailed 3D structure information (and has 
arguably seen the most recent growth in use), it is far from 
being the only one [11]. Scanning electron microscopy 
(SEM) [12] and its recent (pseudo) 3D counterpart 
focused ion beam (FIB-SEM) [13], confocal microscopy, 
micromodels [14], magnetic resonance imaging (MRI) 

[15], particle image velocimetry (PIV) [16], and 4D 
micro-computed tomography (4D µCT) [17] have all 
provided valuable insights and detailed textural/elemental 
information. Techniques such as MRI, PIV, and 4D µCT 
have the ability to capture dynamic processes. 

Each imaging approach is capable of digitally 
reconstructing objects that range from nanometers to 
centimeters in size, revealing structure for quantification 
and investigation of flow and mechanical phenomena. 
Larger scales of interest with a sufficiently large 
representative elementary volume (REV) provide 
monitoring and understanding on practical scales, but 
often need to be aided by smaller-scale analyses to 
determine properties such as porosity, permeability, or 
Young’s modulus. As such high-quality imaging is 
increasingly available, systems to store, retrieve, analyze, 
and simulate volumetric or large-area images are essential 
to derive useful information from them. The ability to 
connect data sources to web-based characterization and 
simulation resources should be at a researcher’s fingertips 
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as 21st century tools of science, but such capability is 
currently not available for study of imaged porous media.   

Since 2015, the Digital Rocks Portal (DRP) has been 
a data platform to overcome aforementioned scale and 
storage problems. Currently it contains 162 porous media 
datasets and the results from analyses and simulations 
performed on them. DRP was originally funded by 
EarthCube [18] and is a member of its Council of Data 
Facilities. It is also a registered data repository in the 
Registry of Data Repositories [19], and is a recommended 
data repository in the Geoscience Data Journal [20]. The 
objectives of DRP are organizing, preserving, and 
providing improved access to large scale images and 
image related data of porous materials, therefore 
enhancing overall research productivity. The increase in 
imaging of different porous materials such as energy 
storage materials like fuel cells and batteries, fibrous 
materials, and material science media, required a change 
in the name of the platform. A factor that accelerated this 
change was the informal feedback gathered from forums 
and conferences. In the near future, along with ongoing 
improvements and functional expansion to the portal 
enabled by an NSF grant RISE-2324786, DRP will be 
renamed as Digital Porous Media Portal (DPMP) to cover 
all the mentioned porous materials.  

In tandem with the new name, fundamental changes in 
the portal include a new version of a data model and 
corresponding metadata fields to represent the new porous 
media data, and the addition of new analysis and 
visualization tools that can be conducted within the portal. 
Analysis tools include geometric characterization of 
porous materials, heterogeneity analysis, data subset 
selection for visualization and simulation, and an 
advanced simulation method, Lattice Boltzmann method 
(LBM) [21–23]. The latter can be applied to recover a 
wide range of multi-physics, including the Navier-Stokes 
equations, multi-phase flow, model diffusion, reactive 
transport, and heat transfer [24–30]. Since the typical size 
of 3D images is 5003 - 25003 voxels, parallel 
implementations and high computational efficiency are 
essential [30–35] for the future of image-based estimation 
of porous media properties.  

DRP is currently in rebuild phase and will be built 
using Texas Advanced Computing Center (TACC) 
infrastructure. Improvements are expected to be 
completed by August 2024. When finalized, the portal 
will address the challenge of using high-performance 
computing (HPC) through a web-based system, as tools 
will be connected to computational systems of TACC, 
giving the user an opportunity to access computing power 
within the portal.  

With the changes outlined here, as an open data 
sharing platform, DRP contributes to open science by: 

• Findability of the data by providing unique 
metadata fields, both machine- and human-
readable; 

• Accessibility of the data and its metadata through 
DRP website; 

• Organization of the data by linking sample 
information, digital and analysis datasets, related 
publications, and related software publications 
under a main “Dataset” class, and providing an 
option to connect different datasets using a 
“Related Datasets” metadata field; 

• Permanent accessibility of data by providing a 
digital object identifier (DOI); 

• Facilitate reproducibility and replicability of 
research through a platform that enables 
continuous use of datasets; 

• Providing open-source tools for characterization, 
visualization, and simulation through a Digital 
Porous Media GitHub organization page [36], 
with current work in progress being 
containerization of those tools for use within 
DRP website. 

In this paper we describe work to combine data in 
DRP directly with analysis and HPC simulation, thus 
creating an open science environment of the 21st century 
for digital porous media community. We discuss 
improving the data model inherent to the organization of 
the portal in Section 2. In Section 3 we provide description 
of the open science analysis workflows and tools that 
users can either use as standalone tools or in the next 
rebuild within the portal applications to directly visualize, 
analyze or simulate with data, including Lattice 
Boltzmann methods.  

We regularly monitor publications reusing data in the 
portal through the citations of the datasets using Google 
Scholar’s alert system, and collect the publications citing 
data or the portal itself. We periodically review these 
publications to distinguish use by original vs. other 
authors, and the type of analyses employed on the data. 
The result points to trends and informs improvements to 
the portal user interface, as well as which tools should be 
connected to the data in the portal. In Section 4 we present 
the results of one such recent analysis. We summarize our 
findings in Section 5, and in Section 6 we describe the 
software stack that will allow all tools and workflows to 
work directly on the data in the upcoming rebuild. 

2 Data Model  
The data model guides how data in DRP is organized and 
described so it can be represented and searched/used in 
the portal. The schema represents the structure of typical 
imaging research projects as a system of hierarchical 
classes with corresponding properties as metadata and the 
relationships between them. In the user interface the data 
model is implemented as a form and a data producer 
creates a “research project” to curate and publish a 
dataset. Different datasets may have different classes, but 
all include required ones to assure each is complete and 
responds to FAIR data standards in terms of metadata, 
data accessibility, and interoperability. For example, no 
dataset can be published without sample information.  
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2.1. Data Model V1.0 

The original data model dating from 2015 and referenced 
as v 1.0 provides the organization and description for the 
current datasets in the portal (See Fig.1).  

 
Fig. 1. Data Model (v1.0). 
 
The data model structure has proved to be flexible and 
appropriate for imaging datasets of geological materials. 
However, expanding to a wider variety of porous media 
datasets required a revision of the data model. Therefore, 
we changed some basic terminology to adjust to old and 
new media and added new metadata fields.   

2.2 Data Model V2.0 

The structure of the v2.0 of data model can be seen in Fig. 
2, where the green fields indicate newly added metadata 
fields, and the asterisks indicate the mandatory metadata 
fields. Below is a list of the new metadata fields. 

Under the Dataset class, we added: 
i) Related datasets: point to other datasets in the 

portal that are part of a same research project, 
derive from an existing dataset or have been 
reused to produce a new published dataset. 

ii) Related software: To note software used to 
generate, analyze, study the dataset 
(visualization, simulation, analysis, etc.). 

Under Sample we added: 
i) A new porous media type, that is called “energy 

storage media”, 
ii) New porous media sources are:  

o Natural (earth). 
o Natural (extraterrestrial). 
o Human-made. 
o Computer generated. 

iii) Sources origin methods:  
o Collection method for natural sources. 
o Offshore/onshore and water depth for 

natural (earth) sources. 
o Procedure and equipment for human 

made sources. 
o Algorithm description for computer 

generated sources. 

Under Digital Dataset we added: 
i) Referenced sample. 
ii) Dimensionality of the dataset. 
iii) Imaging center. 
iv) Imaging equipment and model. 

Under Analysis Dataset we added: 
i) Segmented (yes/no) option. 
ii) Referenced sample. 
iii) Referenced digital dataset. 
iv) New analysis types: machine learning and 

simulation. 

3 Tools and Workflows 
The tools discussed here are divided into two sections: 
visualization and analysis. All the tools presented here are 
coded using Python programming language except the 
Lattice Boltzmann simulator, which is discussed in the 
following sections. 

The tools are provided through a GitHub organization 
named “Digital Porous Media” [36] as stand-alone tools. 
Once the portal rebuild is finished, we will provide all of 
these tools also as containerized applications that the 
portal users can directly use on their data (refer to Section 
6 for the Core Experience Portal of TACC). 

Any files that are either uploaded or resulted from a 
containerized application in DRP will show up in the 
“Data files” area, accessible through the main dashboard 
of a user account. The files will be stored in the file system 
on Corral [37], TACC’s high performance storage system, 
in association with the users’ portal accounts. Portal 
accounts on the HPC systems are essentially TACC 
accounts, which are open to verified academic and 
industrial users performing research. Usage of TACC’s 
systems is monitored, and any violations are resolved 
using standard practices that are well established in 
TACC’s usage policies [38]. Data resulting from the 
analyses can then be published in a new project or 
downloaded from the user account at their discretion. 

3.1 Visualization Tools 

We developed visualization tools mainly using a Python 
library called PyVista [39].  

2D visualization tools include the following: 
• Histograms tool to view either single or multiple 

histograms in the same figure; 
• Slice plot tool to view various 2D slices of the 

data; 
• GIF tool to generate gifs from 2D slices. 

3D visualization tools include the following: 
• Orthogonal slices tool that plots orthogonal 

slices of a dataset (Fig. 3A); 
• Isosurface plot (Fig. 3B); 
• Glyph plot (Fig. 3C); 
• Streamline plot (Fig 3D). 
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Fig. 2. New Model (v2.0).

 

Fig. 3. 3D visualization tools. 

3.2 Analysis Tools 

Recent developments of DRP includes the development 
of various analysis tools and Jupyter Notebook 
workflows. These tools are discussed in detail below. 

3.2.1. Minkowski Functionals 

The first analysis tool of the portal is a Jupyter Notebook 
workflow to calculate four of the Minkowski functionals 

in 3D. These functionals are volume (M0), surface area 
(M1), integral mean curvature (M2), and Euler 
characteristic (M3). Each of these functions is 
implemented using two or more Python packages, mostly 
using scikit-image [40] and Quantimpy [41]. Their 
function forms are given with the equations below and 
exemplified for a single sphere. 
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3.2.2 Heterogeneity Measurement 

Heterogeneity measurement is a Jupyter Notebook 
workflow that measures whether a rock sample is 
heterogeneous or homogeneous based on scale-
independent porosity variance calculations within a 
moving window of increasing size in 2D or 3D samples 
[42]. This classifier was previously used to classify 
segmented images from the DRP as homogeneous or 
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heterogeneous with high accuracy, provided no fractures 
were present. An example of the classification is shown in 
Fig. 4 and Fig. 5. The starting radius for the moving 
window for every image is based on the maximum 
inscribed sphere radius, and the reported radius is relative 
to the starting radius. 

 

Fig. 4. Cross-sections of two example images, Estaillades 
Carbonate and Bentheimer Sandstone from Digital Rocks Portal 
[41, 42]. Solids are shown in black (0), pores in white (1). 

3.2.3 Competent Subset Selection 

The competent subset selection tool is a tool developed to 
find a subset in a given 3D sample that is suitable for 
visualization, simulation, or 3D printing operations. It is 
implemented for two cases. 

 The first use case is finding a competent subset for 
field visualizations. As the scale of velocities is usually in 
different orders independent of the velocity data source 
(i.e., experimental or simulation), visualizing velocity 
fields is tricky. The competent subset selection algorithm 
for velocity fields bootstraps a subset sized n, and a 
smaller subset, called nsub. Then, mean, inverse variance, 
and non-zero velocity components are collected for n, and 
only the non-zero velocity points are collected in nsub. The 
nsub part is evaluated to ensure connectivity in the middle 
part of the visualized subset. In the next step, the harmonic 
mean of these statistics is calculated, as the aim is to 
maximize all these values. Based on the collected 
bootstrapped statistics over a batch, the maximum 
harmonic mean subset is selected.  

 The second format of this function is developed for 
cases without velocity data. Therefore, porosity is the 
main metric. Under the same workflow, only the 
parameters are changed. Instead of non-zero velocity 
points, the number of pixels in the largest connected 
component is collected, both for n and for nsub. Then, we 
limited the porosity of the selected competent subset to ± 
20% of the original sample porosity to prevent selecting a 
non-characteristically porous section.  

 Fig. 6 shows different search spaces for competent 
subset selection algorithm. Fig. 7 illustrates a competent 
subset selection for velocity field visualizations. 

3.2.4 Interactive Medial Axis Extraction Tool 

Medial axis can be used to analyze the geometric structure 
of the pore space in porous media [45]. The medial axis 

algorithm starts from a digitized object with the objective 
to “thin” it down without changing the topology of the 
object. The algorithms examine voxels (and their 
neighbors) and removes them if removal does not change 
topology (e.g., connectivity), until the tinning operation 
cannot continue further [46]. This medial axis can be used 
for analyzing connectivity, tortuosity, pore throats, throat 
barriers, and visualization [47–49].  

  

Fig. 5. The heterogeneity assessment curve [42] provides a scale 
independent measure that quantifies the sample heterogeneity. 
Here, limestone would be classified as heterogeneous and 
sandstone as homogeneous. The zones have been determined 
based on data in DRP in [42].  

 

Fig. 6. Diagonal (left) and exhaustive (right) search algorithms 
for competent sub-set selection. 

 The developed tool uses scikit-image to extract 
medial axis, and PyVista to visualize the results. There is 
an interactive component in this visual, which is a plane. 
This plane can be moved in one axis of the visual to reveal 
the medial axis, or to hide it. Fig. 8 illustrates two results 
of this tool used on a glass bead pack (left) and the 
Castlegate Sandstone [50] (right), where the red body 
represents the medial axis. 

3.2.5 Image Processing Workflow 

An image processing workflow is developed for 
analyzing hydrate bearing soil images [51]. This 
workflow is, then, stripped from the dataset and became a 
standalone tool with the intention of generalizing to other 
datasets in DRP. It includes beam hardening correction; 
two image filters, median and anisotropic diffusion; 
various segmentation methods such as multi-class Otsu 
thresholding and watershed; and characterization of 
disconnected components. The workflow is also 
developed to be suitable for multi-threading to reduce 
computational time for large datasets. 

A B 
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Fig. 7. Images on the left represent random subset selection, and 
images on the right are the competent subset selections. A&B: 
subset selections for velocity field visualizations for Bentheimer 
Sandstone [44]; C&D: same process for Estaillades Carbonate 
[43]. 

 

Fig. 8.  Medial axis extraction tool results. A: Glass bead pack 
(subset size is 1503); B: Castlegate sandstone (subset size is 
1003) 

 The method to characterize disconnected components 
was based on the volumes of disconnected components 
and their aspect ratio, that is, the ratio the of minimum 
axis length to maximum Feret diameter. 

 This workflow is planned to be maintained and 
versioned under the Digital Porous Media GitHub 
repository [36] and is currently available in there as v1.0 
[52] as of April 29, 2024. 

3.2.6 Lattice Boltzmann Method Solver (LBPM) 

LBPM (Lattice Boltzmann Methods for Porous Media) 
[53] is an open-source software framework that was 
specially designed for characterizing various flow 
processes in digital rock physics workflows. The software 
package has extensive capabilities in direct simulation of 
single- and multiphase fluid flow, and electrochemical 
and ion transport through a variety of porous media. Thus, 
it can provide many of the image-based properties of 

porous media desired by the research community, such as 
relative permeability. 

 The existing LBPM software framework contains 
computationally efficient workflows that readily scale 
from local workstations to exascale supercomputing 
clusters. It is our motivation to link the DRP datasets to 
HPC resources in an easy-to-use fashion. 

 The planned addition of LBPM as a portal application 
will provide users a streamlined workflow for performing 
large-scale flow simulations with data hosted on DRP (see 
more details on future portal applications in Section 6). 
Users will have direct access to their private workspaces 
with their unpublished data as well as publicly available 
dataset for their simulations. They will also be able to 
launch, monitor, and analyze their simulations using 
TACC computing resources. 

 In addition, we developed pyLBPM – a Python-based 
management interface for the LBPM software that is 
available under DPM GitHub organization [36]. This 
wrapper contains modules that will help users install 
LBPM and its dependencies, design and execute 
simulation experiments, and track simulation progress. 
Just as all the previous tools introduced in this paper, 
LBPM and pyLBPM will be available as an Application 
through the Portal and work directly with data.   

 At the time of this writing, the pyLBPM modules are 
under development. Several features that are already 
implemented include:  

1. Functions to download, configure, and install 
LBPM and its dependencies directly from a 
Python command line; 

2. CSV, XML, and HDF5 readers specifically 
designed to ingest simulation outputs and modify 
simulation inputs using Python; 

3. An interactive visualization dashboard to 
analyze multiphase simulation results (Fig. 9).  

 The release of the module will also provide a 
graphical interface to set up simulation experiments, 
complete with selections and suggestions for required 
input parameters. It will contain a Python-based launcher 
to facilitate starting and managing multiple experiments 
simultaneously. Users that would like to publish the 
resultant datasets will be able to do so as a new dataset 
and link it to the one from which one was derived through 
the Related Dataset metadata element. All datasets are 
published under a CC BY 3.0 license [54] that asks others 
to cite the dataset if they use it. DRP publicly distributes 
and preserves the datasets, but the creators are the ones 
that obtain credit for their work. 

4 Citation Analysis on DRP Data  
We conducted a citation analysis to find out how DRP 
datasets are cited by researchers other than their authors, 
or in other words data reuse. For the analysis, 22 
publications between 2020 and 2023 that cited datasets in 
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DRP were randomly selected. The study included learning 
about imaging modality being reused, the domain 
sciences reusing the data, and whether the study includes 
image processing or not. This analysis provided good 
insights into DRP data use and informed the direction for 
improvements that we are currently implementing, 
including improving the user interface, developing 
analysis tools, and adding the new metadata fields.  

 

 

 

Fig. 9. LBPM Python interface dashboards provide the ability 
to interact with starting, monitoring and analyzing results of an 
LBPM simulation. This will become an active application in 
the Portal with direct link to data. The image reused in this 
figure is Gambier Limestone from [50]. 

 We observe that the majority (~65%) of the cited data 
are either micro-CT or CT scans, almost 50% of it being 
micro-CT. These numbers are followed by X-ray 

fluorescence and scanning electron microscopy (SEM) 
datasets. Considering the cost and therefore the 
availability of X-ray-based industrial devices, this trend is 
logical. Contrary to SEM images, there is limited sample 
preparation required for CT scans, which explains this 
trend. The types of imaging modality results are given in 
Fig. 10 (left). 

55% of all the papers conduct image processing work 
as shown in Fig 10 (right). The range of image processing 
methods vary from simple filtering to extensive studies 
using deep learning. Two papers mention image 
processing very briefly but don’t give method details and 
thus were not categorized for image processing. 
Considering the sensitivity of porous media materials to 
image filtering and segmentation, we expect that 
researchers conduct their own characterization analyses.  

 
Fig. 10 Imaging modality (left) and image processing methods 
(right) present in the analyzed papers. Imaging modality is 
currently not a metadata field, we infer it from the project 
abstract or the related publication. 

As mentioned, a substantial number of the papers 
focus on porous media characterization. This result is 
followed by porous media flow with 15%. The remaining 
papers correspond to different domains, including fracture 
flow, geomechanics, mineral characterization, porous 
media reconstruction, and reactive transport (Fig. 11). 

We distinguish original use of a dataset, reuse by the 
authors of the dataset, and reuse by others. If a paper uses 
a dataset for the first time, and is the uploader to DRP, we 
call that “original use”. If a study uses an existing dataset 
from DRP, but the authors are the previous publisher of 
the dataset, this is “reuse by authors”. Finally, if the 
dataset used in a study is an existing dataset, and the 
authors of the paper are not the publishers of the dataset, 
this is  “reuse by others”. The trend for this analysis in Fig. 
12 shows a significant percentage of original uploads, 
with 41%. We also see that reused papers combined have 
a higher percentage than the original ones. 41% of all the 
papers are reused by others, and 18% of them are reused 
by the authors. We can expect to see more original papers 
as data collection gets easier, and more reuse cases taking 
advantage of increasing computational algorithms and 
infrastructure in the following years.  

We also collected use cases of these data. This 
information can be named as analysis type, but it should 
not be confused with the metadata field “analysis type” of 
analysis datasets. The data model is only for datasets, 
whereas this analysis is for the content of the analyzed 
papers. The use case classes described here are 
characterization, which represents any kind of digital 
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analysis to find characteristic properties of porous media; 
experimental, which corresponds to all laboratory 
experiments; machine learning (ML), which corresponds 
to the use of ML and deep learning algorithms; and 
simulation, which represents any type of simulation study, 
either numerical or analytical, or both. This “use case” can 
be named as a “reuse case” if the dataset is reused data 
from DRP. Of course, some papers might have multiple 
use cases and the dominant one was counted. 

Fig. 11. Research domains of analyzed papers. 

 
Fig. 12. Dataset use of the analyzed papers. 

Figure 13 shows that datasets are mostly used in 
simulations (35%) followed by ML (26%), experimental 
(22%), and characterization (17%). The trend can be 
explained by the increasing availability of computation 
power around the world. This enables the use of high-
performance computing mechanisms even with relatively 
weaker, local devices. Consequently, in coming years we 
expect to see more studies employing larger simulations, 
and larger machine learning/deep learning models. 

Figures 11 and 13 indicate the dominant types of 
analysis are characterization and flow simulation. That 
informs our choice of tools reviewed in Section 3.2. We 
further added new analysis types to the data model, 
experimental and machine learning. 

 
Fig. 13. The research tools utilized in analyzed papers. 

The papers and corresponding datasets used in this 
analysis are in Table 1 in the Appendix. 

5 Summary and Conclusion 
In this paper, we introduced a new data model for DRP to 
achieve several improvements over the first model, such 
as including more porous media types, more metadata 
fields, and adding clarity to some data classes. 

We further introduced new workflows and tools that 
are planned to be a part of DRP (soon to be renamed 
DPMP) to directly analyze the datasets through TACC’s 
HPC systems. Moreover, we introduced a Lattice 
Boltzmann Method Solver (LBPM) that will also be 
available to users through DRP’s new interface. 

Finally, we published our analysis results on the 
publications that use DRP datasets to understand the 
general trends in imaging modalities, research domains, 
reuse cases, and dataset uses. 

6 Work in Progress and Sustainability 
DRP is in the process of rebuilding its infrastructure using 
TACC’s “Core Experience Portal” (CEP) [55]. This 
change is an important milestone to achieve the 
sustainability of the portal, as the core infrastructure is 
maintained by a larger team at TACC, which serves 
several different portals. This common infrastructure 
enables DRP to be easily maintained and updated. One of 
the core capabilities that we are building is connecting 
data in a portal to the high-performance computing 
resources that are provided by TACC to UT Austin 
researchers and beyond. All tools and workflows we 
report on in this paper are currently standalone tools and 
will become containerized applications with the newly 
rebuilt portal. That means that users will be able to submit 
jobs to queues on various machines (e.g., Lonestar6, 
which has 560 compute nodes having 256 GB of DRAM, 
and 85 A100 GPU nodes). This will in turn remove 
friction from using data in simulation and AI workflows. 
Fig. 14 shows the portal interface build in progress, where 
user can go through the “Applications” tab to interact with 
containerized applications - both remote execution and 
interactive jobs - and analyze their data on the portal. A 
zoom in to the tabs in the user interface is given in Fig 15. 
These applications will be registered with TAPIS [56], an 
API platform that provides HPC and file management 
integration to TACC resources, to point at applications 
metadata on Corral. 

We currently charge one-time publication fees for 
datasets larger than 2GB, and the fee structure was 
discussed in detail in [57]. The changes to this model are 
inevitable with the new functionality in simulation and we 
will have a workshop and community discussion before 
we establish the new fee structure. 
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Fig. 14 DRP development stage snapshot as of June 12, 2024. 

 

 

 
Fig. 15. DRP development stage zoom in snapshots to user 
dashboard, data files, and applications tabs as of June 12, 2024. 
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Table 1. Data use analysis publications list. 

Paper Cited datasets Imaging 
Modality Use* Reuse Case  Research Domain I.P.** 

[58] [59] CT 2 ML Porous Media Reconstruction 1 

[60] [61] FIB-SEM; 
mCT 1 ML Porous Media Flow 0 

[62] [63] CT; 
mCT 2 Characterization Porous Media Characterization 1 

[64] [65] CT 2 Simulation Porous Media Characterization 0 

[66] [59,67] CT; 
mCT 2 ML Porous Media Characterization 0 

[68] [69] Other 1 Simulation Porous Media Characterization 0 

[70] [71] XRF 1 ML Mineral Characterization 1 

[72] [73–75] mCT 2 Characterization Porous Media Characterization 1 

[76] [77] mCT 1 Experimental Porous Media Characterization 1 

[78] [67] mCT 0 ML; 
Simulation Porous Media Characterization 1 

[79] [80] CT 0 Characterization Porous Media Characterization 1 

[81] [82] Other  0 Experimental  Porous Media Flow  1 

[21] [22] mCT 0 Experimental Fracture Characterization 1 

[23] [71] XRF 2 Simulation Fracture Flow 0 

[24] [25] Other 0 Simulation Fracture Characterization 0 

[26] [27] mCT 0 Characterization Porous Media Characterization 1 

[28] [29] mCT 0 ML Porous Media Characterization 1 

[30] [83] Other 0 Experimental Porous Media Flow 0 

[31] [32] mCT 0 Experimental Porous Media Characterization 1 

[33] [34] mCT 2 Simulation Porous Media Characterization 0 

[35] [84] mCT 2 Simulation Reactive Transport 0 

[85] [65] mCT 2 Simulation Geomechanics 0 

* For dataset use, 0,1,2 represents original, reused by the author, and reused by others respectively. 

** For image processing (I.P.), 0 and 1 represent the cases where there is not and there is image processing, respectively.
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