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Abstract. This theoretical-experimental study focuses on the development of analytical models for predicting key 
petrophysical parameters such as the Formation Resistivity Factor (FRF), Resistivity Index (RI), and Apparent FRF 
in subsurface conditions characterized by varying temperatures. For this purpose, alongside the well-known 
Archie’s equation, novel parameters including the thermal water resistivity modulus (WRMT), thermal rock 
resistivity modulus (RRMT), and thermal true resistivity modulus (TRMT) were introduced. In the present study, a 
new approach is introduced based on a previous work by Nourani et al. (2023), which used similar concepts to assess 
the resistivity and overburden pressure. In accordance with the analytical models developed, it is evident that the 
FRF varies with temperature along with factors such as the FRF measured at a base temperature, which is typically 
considered ambient temperature, cementation factor, the coefficients of thermal expansions of pore and bulk 
volumes, and temperature difference. In addition, the proposed theoretical analyses shed light on the prediction of 
RI at desired temperatures based on RI data at ambient conditions together with parameters such as saturation 
exponent, pore and water thermal expansion coefficients, and temperature difference. Real core data derived from 
existing literature was used to validate the newly formulated FRF and RI models, which demonstrated their 
robustness to predict these parameters across a wide range of temperatures. The use of these models can be 
particularly beneficial for cases where it is impractical, inefficient, or unfeasible to carry out actual FRF and RI 
measurements at elevated hydrocarbon reservoir temperatures. A comprehensive framework can be used for 
predicting FRF and RI by incorporating these temperature-dependent models with those introduced by Nourani et 
al. (2023) for predicting FRF and RI under overburden pressure conditions at both realistic subsurface temperature 
and pressure conditions.

Introduction 

Among the most essential petrophysical properties for log 
calibration and reservoir characterisation is the Archie's 
Resistivity Factor (PRF) and Resistivity Index (RI). 
Archie's empirical equations delineate the electrical 
characteristics of sandstones. These equations are 
formulated under the presumption that the sandstone is 
devoid of clay and exhibits strong water-wetting 
properties. Furthermore, they assume a straightforward, 
single-peaked pore structure, non-conductive rock grains, 
and that all water within the pores participates in electrical 
conduction [1–3]. 

Determining the volume of hydrocarbon initially in 
place (HCIIP) under reservoir conditions stands as a 
pivotal task in reservoir management. This calculation 
hinges upon factors such as water saturation, porosity, and 
the overall reservoir volume. Initially, the water saturation 
and porosity of the reservoir must be assessed. 
Subsequently, HCIIP can be determined by multiplying 
the product of one minus water saturation, porosity, and 
the total reservoir volume [4,5]. 

In order to accurately compute water saturation using 
Archie's equation, it becomes imperative to undertake the 
calibration of electrical logs. Within laboratory settings, 
FRF and RI experiments are meticulously designed to 
replicate reservoir conditions as closely as feasible. 
However, despite the meticulous efforts invested, these 
experiments often operate under conditions of lower 
overburden pressure and temperature compared to actual 
reservoir environments. Given the constraints of time, the 
complexity involved in measurements, and the higher 
expenses associated with conducting experiments at full 
reservoir conditions, practical considerations often 
necessitate adjustments. Thus, while striving for accuracy 
in simulating reservoir conditions, pragmatic approaches 
are adopted to balance the demands of scientific precision 
with practical limitations [6,7]. 

Hence, the testing conditions typically diverge from 
those encountered within the reservoir. Although the 
outcomes may not perfectly mirror real-world scenarios 
and may lack complete representativeness, they still offer 
valuable insights for petrophysical interpretations. Thus, 
it remains crucial to acknowledge and account for the 
inherent limitations of the testing conditions when 
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scrutinizing the findings yielded by FRF tests. Nourani et 
al.[7] have formulated mathematical models utilizing 
Archie’s equation to forecast FRF and RI across varying 
overburden pressures. The FRF models encompass two 
variations: the Single-FRF model and the Multi-FRF 
model. The Single-FRF model establishes a connection 
between the cementation exponent (m), pore volume 
compressibility (𝐶𝐶𝑝𝑝[bar-1]), bulk compressibility (𝐶𝐶𝑏𝑏[bar-

1]), and the reference FRF through the following equation: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2 
= 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 

𝑒𝑒𝑚𝑚 (𝐶𝐶𝑝𝑝− 𝐶𝐶𝑏𝑏)∆𝑃𝑃                   (1) 

The Multi-FRF model delineates the correlation 
between the rock resistivity modulus (RRM, represented 
by   𝛾𝛾𝑅𝑅𝑜𝑜[bar-1]), the difference in confining pressure (∆P 
[bar]), and the reference FRF according to the following 
equation: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2 
= 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 

𝑒𝑒−𝛾𝛾𝑅𝑅𝑜𝑜𝑜𝑜∆𝑃𝑃            (2) 

The RI model's dependency lies in the saturation ex-
ponent (n), 𝐶𝐶𝑝𝑝, formation brine compressibility (𝐶𝐶𝑓𝑓𝑏𝑏𝑃𝑃[bar-

1]), and the reference RI, expressed as follows: 
 

𝐹𝐹𝑅𝑅𝑃𝑃2 
=  𝐹𝐹𝑅𝑅𝑃𝑃1 

𝑒𝑒  𝑛𝑛(𝐶𝐶𝑓𝑓𝑏𝑏𝑜𝑜−𝐶𝐶𝑝𝑝)∆𝑃𝑃
       (3) 

 
While the impact of overburden pressure on FRF and 

RI has been studied through modelling, there remains a 
notable lack of mathematical models capable of 
accurately balancing the results of experiments gauging 
FRF and RI under ambient temperature to accurately 
reflect reservoir conditions. This analytical-experimental 
investigation aims to investigate the interplay among 
FRF, RI, and subsurface temperature. The overarching 
goal is to devise mathematical models capable of 
forecasting FRF and RI across varying subsurface 
temperature conditions. Moreover, by integrating these 
temperature-dependent models with those proposed by 
Nourani et al. (2023) for predicting FRF and RI under 
different overburden pressure conditions, a 
comprehensive framework can be established for 
enhanced prediction of FRF and RI. 
 
Development of the Thermal Models 
 
Porosity denotes the proportion of voids or pores within a 
material, serving as a gauge for the available space. 
Typically, it is represented as the ratio of pore space 
volume (𝑉𝑉𝑝𝑝) to the total bulk volume (𝑉𝑉𝑏𝑏) of the rock. FRF 
quantifies the relationship between the resistivity of fully 
saturated rock with brine (Ro [Ωm]) and the resistivity of 
formation water (Rw [Ωm]). The calculation of FRF 
involves the interplay of porosity (φ [fraction]) and the 
cementation exponent, as expressed by the Archie 
equation[3]: 
 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑅𝑅𝑜𝑜 
𝑅𝑅𝑤𝑤 

= 𝜑𝜑−𝑚𝑚     (4) 

Resistivity Index (RI) stands as another critical 
dimensionless parameter. It is computed as the ratio of the 
rock's resistivity under partial water saturation (Rt [Ω m]) 
to its resistivity when fully saturated with water (Ro). This 
index reflects the amount of water present in the pore 
space, playing a pivotal role in the computation of the 
rock's electrical properties. Notably, RI correlates with 
water saturation (𝑆𝑆𝑤𝑤 [fraction]), as outlined in [1]: 

 
𝐹𝐹𝑅𝑅 =

𝑅𝑅𝑡𝑡 
𝑅𝑅𝑜𝑜

= 𝑆𝑆𝑤𝑤−𝑛𝑛    (5)  

Nourani et al.[7] introduced water resistivity modulus 
(WRM, 𝛾𝛾𝑅𝑅𝑤𝑤𝑜𝑜[bar-1]), rock resistivity modulus 
(RRM,𝛾𝛾𝑅𝑅𝑜𝑜𝑜𝑜[bar-1]), and true resistivity modulus 
(TRM, 𝛾𝛾𝑅𝑅𝑡𝑡𝑜𝑜[bar-1]) as indicators of the relative change in 
water resistivity, the resistivity of rock when fully 
saturated with brine, and the rock's resistivity under 
partial water saturation, respectively, in response to a 
pressure change, as delineated below [7]:  
 

𝛾𝛾𝑅𝑅𝑤𝑤𝑜𝑜 = − 1
𝑅𝑅𝑤𝑤

𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝑃𝑃

    (6) 
 

𝛾𝛾𝑅𝑅𝑜𝑜𝑜𝑜 = − 1
𝑅𝑅𝑜𝑜

𝜕𝜕𝑅𝑅𝑜𝑜
𝜕𝜕𝑃𝑃

     (7) 
 

𝛾𝛾𝑅𝑅𝑡𝑡𝑜𝑜 = − 1
𝑅𝑅𝑡𝑡

𝜕𝜕𝑅𝑅𝑡𝑡
𝜕𝜕𝑃𝑃

     (8) 
 

Now in this study analogous parameters known as the 
thermal water resistivity modulus (WRMT, 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤[°C-1]), 
thermal rock resistivity modulus (RRMT, 𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤[°C-1]), and 
thermal true resistivity modulus (TRMT, 𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤[°C-1]) are 
introduced. They differ from their counterparts by serving 
as indicators of the proportional shift in water resistivity, 
the resistivity of rock under complete brine saturation, and 
the rock's resistivity under partial water saturation, 
respectively, in reaction to temperature variations, as 
follows: 

 
𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤 = − 1

𝑅𝑅𝑤𝑤

𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝜕𝜕

       (9)  
 

𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤 = − 1
𝑅𝑅𝑜𝑜

𝜕𝜕𝑅𝑅𝑜𝑜
𝜕𝜕𝜕𝜕

     (10) 
 

𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤 = − 1
𝑅𝑅𝑡𝑡

𝜕𝜕𝑅𝑅𝑡𝑡
𝜕𝜕𝜕𝜕

     (11) 
 

With the decrease of 𝐹𝐹𝑤𝑤, 𝐹𝐹𝑜𝑜 and 𝐹𝐹𝑡𝑡 with temperature, 
the gradients in Equations (9), (10) and (11) become 
negative numbers. Thus, the values of  𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤,  𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤 , and 
 𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤are positive. 
 
Development of the Thermal Water Resistivity Model 
 
As a result of separating the Rw in Equation (9) and 
integrating, the Rw at a given temperature can be found as 
follows: 

𝐹𝐹𝑤𝑤𝜕𝜕2 = 𝐹𝐹𝑤𝑤𝜕𝜕1𝑒𝑒
−∫ 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤𝜕𝜕𝜕𝜕

𝑤𝑤2
𝑤𝑤1     (12) 
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where 𝐹𝐹𝑤𝑤𝜕𝜕1  is water resistivity at initial temperature.  For 
small values of term (∫ 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤𝜕𝜕𝑇𝑇

𝜕𝜕2 
𝜕𝜕1 

), Equation (13) can be 

used to convert the exponential term in Equation (12) into 
a linear function[8].  
 

𝑒𝑒
  −∫ 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤𝜕𝜕𝜕𝜕

𝑤𝑤2 
𝑤𝑤1 ≈  1 − ∫ 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤𝜕𝜕𝑇𝑇

𝜕𝜕2 
𝜕𝜕1 

     (13) 

 
This approximation arises from the Maclaurin series 

expansion of 𝑒𝑒   𝑥𝑥, where the term (∫ 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤𝜕𝜕𝑇𝑇
𝜕𝜕2 
𝜕𝜕1 

) was 

substituted for 𝑥𝑥 and only the first two terms of the 
expansion were considered.  
The Arp's formula, a well-established equation with a 
long history, can be used to determine how temperature 
affects water resistivity as follows [9]: 
 

𝐹𝐹𝑤𝑤𝜕𝜕2 = 𝐹𝐹𝑤𝑤𝜕𝜕1(𝜕𝜕1+21.5
𝜕𝜕2+21.5

)    (14) 
 

 Although this formula has been around for a long 
time, it remains one of the most widely embraced 
equations in the field, retaining its validity and continued 
use for estimating temperature-water resistivity 
relationships despite its advancing age [10,11].  
Combining Equations (12), (13) and (14), the term 
(∫ 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤𝜕𝜕𝑇𝑇

𝜕𝜕2
𝜕𝜕1

) can be calculated as follows:  
 

∫ 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤𝜕𝜕𝑇𝑇
𝜕𝜕2
𝜕𝜕1

= ∆𝜕𝜕
𝜕𝜕2+21.5

    (15) 
 

By substituting Equation (15) into Equation (12), one 
can estimate the impact of temperature on water resistivity 
as follows: 

𝐹𝐹𝑤𝑤𝜕𝜕2 = 𝐹𝐹𝑤𝑤𝜕𝜕1𝑒𝑒
−( ∆𝑤𝑤

𝑤𝑤2+21.5)    (16) 
 

Equation (16) represents a refined adaptation of Arp's 
equation, particularly effective when temperature changes 
remain within a range of up to 10°C or less. 
 
Development of the Thermal FRF Model 
 
The Ro at a given temperature can be determined by 
separating the Ro in Equation (10) and integrating as 
follows: 
 

𝐹𝐹𝑜𝑜𝜕𝜕2 =  𝐹𝐹𝑜𝑜𝜕𝜕1𝑒𝑒
−∫ 𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤𝜕𝜕𝜕𝜕

𝑤𝑤2
𝑤𝑤1      (17) 

 
where 𝐹𝐹𝑜𝑜𝜕𝜕1 is rock resistivity at initial temperature. 
Combining Equations (4) and (10), yields the following 
equation: 
 

𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤 = −𝜑𝜑𝑚𝑚

𝑅𝑅𝑤𝑤

𝜕𝜕(𝑅𝑅𝑤𝑤𝜑𝜑𝑚𝑚)

𝜕𝜕𝜕𝜕
     (18) 

 
The cementation factor and saturation exponent are 

expected to change due to changes in temperature, but for 
the sake of simplicity of deriving the mathematical 
models, it was assumed that 𝑚𝑚 and 𝑛𝑛 do not vary with 
temperature. Therefore, based on this assumption (i.e 

constant cementation exponent over the temperature 
interval of interest), taking the derivative of the term (𝑅𝑅𝑤𝑤

𝜑𝜑𝑚𝑚
) 

with respect to temperature in Equation (18) and 
rearranging it, the 𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤  can be calculated using the 
following formula:  
 

𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤 = − 1
𝑅𝑅𝑤𝑤

𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝜕𝜕

+ 𝑚𝑚 1
𝜑𝜑
𝜕𝜕𝜑𝜑 

𝜕𝜕𝜕𝜕
    (19) 

𝜕𝜕𝜑𝜑 

𝜕𝜕𝜕𝜕
 represents the variation of porosity (Vp/Vb) with 

temperature. In order to find an analytical representation 
of this term, two new definitions are introduced. By 
definition, variations in the pore volume and bulk volume 
of a porous rock with temperature are presented by two 
terms of pore volume thermal expansion coefficient (𝐶𝐶𝑝𝑝𝜕𝜕) 
and bulk volume thermal expansion coefficient (𝐶𝐶𝑏𝑏𝜕𝜕), 
respectively, expressed in Equations (20) and (21):   
 

 𝐶𝐶𝑝𝑝𝜕𝜕 = 1
 𝑉𝑉𝑝𝑝

𝜕𝜕 𝑉𝑉𝑝𝑝 

𝜕𝜕𝜕𝜕
           (20) 

 𝐶𝐶𝑏𝑏𝜕𝜕 = 1
 𝑉𝑉𝑏𝑏

𝜕𝜕 𝑉𝑉𝑏𝑏
 

𝜕𝜕𝜕𝜕
           (21) 

Taking the derivative of the porosity with respect to 
temperature and replacing  𝐶𝐶𝑝𝑝𝜕𝜕 and  𝐶𝐶𝑏𝑏𝜕𝜕 from Equations 
(20) and (21) into it, yields the following equation: 
 

𝜕𝜕𝜑𝜑 

𝜕𝜕𝜕𝜕
=  𝜑𝜑 (𝐶𝐶𝑝𝑝𝜕𝜕 −  𝐶𝐶𝑏𝑏𝜕𝜕)    (22) 

Equations (9), (19) and (22) can be combined to yield 
the following equation: 
 

𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤 = 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤 + 𝑚𝑚 (𝐶𝐶𝑝𝑝𝜕𝜕 −  𝐶𝐶𝑏𝑏𝜕𝜕)         (23) 

As a result of replacing 𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤  in Equation (17) with 
Equation (23), the following equation results: 
 

𝐹𝐹𝑜𝑜𝜕𝜕2 =  𝐹𝐹𝑜𝑜𝜕𝜕1𝑒𝑒
−∫ 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤𝜕𝜕𝜕𝜕+∫  𝑚𝑚( 𝐶𝐶𝑏𝑏𝑤𝑤− 𝐶𝐶𝑝𝑝𝑤𝑤)  𝜕𝜕𝜕𝜕

𝑤𝑤2 
𝑤𝑤1 

𝑤𝑤2 
𝑤𝑤1   (24) 

 
As a result of dividing both sides of Equation (24) by 

Equation (12), the FRF at elevated temperatures can be 
calculated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕2 
=  𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕1 

𝑒𝑒
∫  𝑚𝑚( 𝐶𝐶𝑏𝑏𝑤𝑤− 𝐶𝐶𝑝𝑝𝑤𝑤)  𝜕𝜕𝜕𝜕
𝑤𝑤2 
𝑤𝑤1     (25) 

 
Consequently, by assuming constant pore and bulk 

volume thermal expansion coefficients over the 
temperature interval of interest, and calculating the 
integration in Equation (25), 𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕2 

 can be determined 
using the following formula: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕2 
=  𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕1 

𝑒𝑒𝑚𝑚 (𝐶𝐶𝑏𝑏𝑤𝑤−𝐶𝐶𝑝𝑝𝑤𝑤) ∆𝜕𝜕     (26) 
 
Development of the Thermal Apparent FRF Model 
 
The reciprocal of electrical resistivity is referred to as 
conductivity. A rock's clay minerals act as separate 
conductors. As a result of the type, quantity, structure, and 

https://link.springer.com/article/10.1007/s42452-020-03438-y#Equ13
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distribution of clay in the rock, the effect of clay on the 
conductivity of the rock varies [12]. Waxman and Smits' 
equation relates the Co to the Cw as follows[13] 
 

𝐶𝐶𝑜𝑜 = 𝐶𝐶𝑤𝑤
𝐹𝐹∗

+ 𝐵𝐵𝑄𝑄𝑣𝑣
𝐹𝐹∗

          (27) 
 
where Co [Ω-1m-1], Cw [Ω-1m-1], 𝐹𝐹∗, Qv [meq/ml] and B 
[(Ω-1m-1)/(meq/ml)] are the brine-saturated rock 
conductivity, the brine conductivity, the shaly-sand FRF 
(apparent FRF), the equivalent conductance of sodium 
clay exchange cations and the volume concentration of 
sodium exchange cations associated with the clay, 
respectively.  
Equation (28) demonstrates a linear relationship between 
Cw and Co, simplifying the form of Equation (27) to: 
 

𝐶𝐶𝑜𝑜 = 𝑎𝑎𝐶𝐶𝑤𝑤 + b          (28)  
 

where a is the slope ( 1
𝐹𝐹∗

), and b is the intercept (𝐵𝐵𝑄𝑄𝑣𝑣
𝐹𝐹∗

). 
Therefore, the shaly-sand FRF can be calculated from 
the reciprocal of gradient (1

𝑎𝑎
) of the plot Co as a function 

of Cw as [13,14]: 
 

𝐹𝐹∗ = 𝑑𝑑𝐶𝐶𝑤𝑤
𝑑𝑑𝐶𝐶𝑜𝑜

          (29) 
 

The following equation is obtained by taking the 
derivative of Equation (29) with respect to temperature: 
 

𝜕𝜕𝐹𝐹∗

𝜕𝜕𝜕𝜕
 = 1

𝑑𝑑𝐶𝐶𝑜𝑜

𝜕𝜕(𝑑𝑑𝐶𝐶𝑤𝑤)
𝜕𝜕𝜕𝜕

− 1
𝑑𝑑𝐶𝐶𝑜𝑜

𝜕𝜕(𝑑𝑑𝐶𝐶𝑜𝑜)
𝜕𝜕𝜕𝜕

 𝑑𝑑𝐶𝐶𝑤𝑤
𝑑𝑑𝐶𝐶𝑜𝑜

    (30) 
 

It is possible to define thermal water conductivity 
modulus (WCMT) and thermal rock conductivity modulus 
(RCMT) as follows: 

 
𝛾𝛾𝐶𝐶𝑤𝑤𝑤𝑤 = − 1

𝑑𝑑𝐶𝐶𝑤𝑤

𝜕𝜕(𝑑𝑑𝐶𝐶𝑤𝑤)
𝜕𝜕𝜕𝜕

          (31) 
 

𝛾𝛾𝐶𝐶𝑜𝑜𝑤𝑤 = − 1
𝑑𝑑𝐶𝐶𝑜𝑜

𝜕𝜕(𝑑𝑑𝐶𝐶𝑜𝑜)
𝜕𝜕𝜕𝜕

          (32) 
 

A combination of equations (30), (31), and (32) gives 
the following equation: 
 

𝜕𝜕𝐹𝐹∗

𝜕𝜕𝜕𝜕
 = 𝐹𝐹∗(𝛾𝛾𝐶𝐶𝑜𝑜𝑤𝑤 − 𝛾𝛾𝐶𝐶𝑤𝑤𝑤𝑤)    (33) 

 
By integrating Equation (33) with respect to 

temperature, the apparent FRF at elevated temperatures 
can be calculated as follows: 

 

𝐹𝐹∗2 =  𝐹𝐹∗1 𝑒𝑒
  ∫  (𝛾𝛾𝐶𝐶𝑜𝑜𝑤𝑤−𝛾𝛾𝐶𝐶𝑤𝑤𝑤𝑤)𝜕𝜕𝜕𝜕

𝑤𝑤2 
𝑤𝑤1             (34) 

 
In light of the fact that water conductivity approaches 

zero when salt concentration approaches zero, Equation 
(31) can be expressed as follows: 
 

𝛾𝛾𝐶𝐶𝑤𝑤𝑤𝑤 = − 1
𝐶𝐶𝑤𝑤

𝜕𝜕𝐶𝐶𝑤𝑤
𝜕𝜕𝜕𝜕

            (35) 
 

By substituting the water resistivity (𝐶𝐶𝑤𝑤 = 1
𝑅𝑅𝑤𝑤

) in 
Equation (35) and taking its derivative with respect to 
temperature, combined with Equation (9), yields 𝛾𝛾𝐶𝐶𝑤𝑤𝑤𝑤 =
−𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤. It was demonstrated that the intercept of the line 
(𝐵𝐵𝑄𝑄𝑣𝑣
𝐹𝐹∗

) in Equation (28) remains constant despite variations 
in temperature [15]. By assuming that the derivative of the 
intercept with respect to temperature is zero, and 
combining Equations (10), (28), and (32), we arrive at the 
following equation: 

 
𝛾𝛾𝐶𝐶𝑜𝑜𝑤𝑤 = − 1

1−𝑏𝑏𝑅𝑅𝑜𝑜
 𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤           (36) 

 
Combining Equations (15), (23), (34), (35), and (36) 

results in the following: 
 

𝐹𝐹∗𝜕𝜕2 
=  𝐹𝐹∗𝜕𝜕1 

𝑒𝑒   𝐾𝐾∆𝜕𝜕            (37) 
 

where 𝐾𝐾 is defined as follows: 
 

  𝐾𝐾 =
( 𝑏𝑏 
𝐶𝐶𝑜𝑜
−𝑚𝑚 ( 𝐶𝐶𝑏𝑏𝑤𝑤− 𝐶𝐶𝑝𝑝𝑤𝑤)(𝜕𝜕2   

+21.5))  

(𝜕𝜕2 +21.5)( 𝑏𝑏 
𝐶𝐶𝑜𝑜
−1)

          (38) 

 
As the fraction 𝑏𝑏

𝐶𝐶𝑜𝑜
 in Equation (38), is less than one, the 

denominator of Equation (38) is always negative. In order 
for K to be positive, the numerator of the fraction must 
also be negative.  
Since the maximum value of 𝑏𝑏

𝐶𝐶𝑜𝑜
 approaches one, if the 

product of terms (𝑚𝑚� 𝐶𝐶𝑏𝑏𝜕𝜕 −  𝐶𝐶𝑝𝑝𝜕𝜕�(𝑇𝑇 + 21.5)) exceeds 
one, the apparent FRF in Equation (37) will inevitably 
increase with increasing temperature. 
 

𝑚𝑚 � 𝐶𝐶𝑏𝑏𝜕𝜕 −  𝐶𝐶𝑝𝑝𝜕𝜕��𝑇𝑇2 + 21.5� > 1        (39) 
 

In clean sands, the excess conductivity (𝑏𝑏) is zero. 
Consequently, Equation (37) simplifies to Equation (26). 
 
Development of the Thermal RI Model 
 
The calculation of RI can also be conducted using a 
similar modelling approach. From Equation (40) we can 
obtain Rt at elevated temperatures if Rt is separated in 
Equation (11) and integrated: 
 

𝐹𝐹𝑡𝑡𝜕𝜕2 =  𝐹𝐹𝑡𝑡𝜕𝜕1𝑒𝑒
  − ∫ 𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤𝜕𝜕𝜕𝜕

𝑤𝑤2 
𝑤𝑤1             (40) 

 
By dividing Equation (40) by Equation (17), the RI at 

a given temperature can be calculated as follows: 
 

𝐹𝐹𝑅𝑅𝜕𝜕2 =  𝐹𝐹𝑅𝑅𝜕𝜕1𝑒𝑒
  ∫ 𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤𝜕𝜕𝜕𝜕

𝑤𝑤2
𝑤𝑤1

− ∫ 𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤𝜕𝜕𝜕𝜕
𝑤𝑤2 
𝑤𝑤1            (41) 

 
Combining Equations (4), (5), and (8) results in the 

following equation: 
 

𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤 = −𝜑𝜑𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛

𝑅𝑅𝑤𝑤
×

𝜕𝜕( 𝑅𝑅𝑤𝑤
𝜑𝜑𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛

)

𝜕𝜕𝜕𝜕
          (42) 
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Consequently, by assuming constant cementation and 
saturation exponents over the temperature interval of 
interest and taking the derivative of the term ( 𝑅𝑅𝑤𝑤

𝜑𝜑𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛) with 
respect to temperature in Equation (42) and rearranging it, 
the 𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤 can be determined as follows:  
 

𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤 = − 1
𝑅𝑅𝑤𝑤

 𝜕𝜕𝑅𝑅𝑤𝑤
𝜕𝜕𝜕𝜕

+ 𝑚𝑚 1
𝜑𝜑
𝜕𝜕𝜑𝜑 

𝜕𝜕𝜕𝜕
+ 𝑛𝑛 1

𝑆𝑆𝑤𝑤

𝜕𝜕𝑆𝑆𝑤𝑤 

𝜕𝜕𝜕𝜕
         (43) 

 
Moreover, the thermal expansion of formation brine; 
𝐶𝐶𝑓𝑓𝑏𝑏𝜕𝜕, is expressed as follows: 
 

𝐶𝐶𝑓𝑓𝑏𝑏𝜕𝜕 = 1
𝑉𝑉𝑤𝑤

𝜕𝜕𝑉𝑉𝑤𝑤 

𝜕𝜕𝜕𝜕
          (44) 

 
where Vw is the volume of the formation brine; this 
volume can be estimated through Equation (45): 
 

𝑉𝑉𝑤𝑤 = 𝜑𝜑𝑉𝑉𝑏𝑏𝑆𝑆𝑤𝑤           (45) 
 

Combining Equations (43) and (44) and taking the 
derivative of the term (𝜑𝜑𝑉𝑉𝑏𝑏𝑆𝑆𝑤𝑤) with respect to 
temperature and replacing 𝐶𝐶𝑝𝑝𝜕𝜕 and 𝐶𝐶𝑏𝑏𝜕𝜕 from Equations 
(20) and (21) into it, yields the following equation: 
 

1
𝑆𝑆𝑤𝑤

𝜕𝜕𝑆𝑆𝑤𝑤 

𝜕𝜕𝜕𝜕
= 𝐶𝐶𝑓𝑓𝑏𝑏𝜕𝜕 − 𝐶𝐶𝑝𝑝𝜕𝜕          (46) 

 
Thus, the 𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤  can be calculated by replacing 

Equations (9), (22) and (46) into Equation (43) as below: 
 
𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤 = 𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤 + 𝑚𝑚�𝐶𝐶𝑝𝑝𝜕𝜕 − 𝐶𝐶𝑏𝑏𝜕𝜕� + 𝑛𝑛�𝐶𝐶𝑓𝑓𝑏𝑏𝜕𝜕 − 𝐶𝐶𝑝𝑝𝜕𝜕�        (47) 

 
By replacing the 𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤  and 𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤 (from Equations (23) 

and (47) respectively) in Equation (41), the RI at elevated 
temperature can be calculated as follows:  
 

𝐹𝐹𝑅𝑅𝜕𝜕2 =  𝐹𝐹𝑅𝑅𝜕𝜕1𝑒𝑒
  ∫  

𝑤𝑤2 
𝑤𝑤1  

�n(𝐶𝐶𝑤𝑤𝑝𝑝− 𝐶𝐶𝑓𝑓𝑏𝑏𝑤𝑤)�𝜕𝜕𝜕𝜕
          (48) 

 
Consequently, by assuming constant saturation 

exponent and thermal expansion of formation brine over 
the temperature interval of interest, and calculating the 
integration in Equation (48), 𝐹𝐹𝑅𝑅𝜕𝜕2 

 can be calculated using 
the following formula: 
 

𝐹𝐹𝑅𝑅𝜕𝜕2 =  𝐹𝐹𝑅𝑅𝜕𝜕1𝑒𝑒
 𝑛𝑛(𝐶𝐶𝑝𝑝𝑤𝑤−𝐶𝐶𝑓𝑓𝑏𝑏𝑤𝑤)∆𝜕𝜕

       (49) 
 

From integration of Equation (46) with respect to 
temperature, the Sw at a given temperature can be 
estimated as follows: 
 

𝑆𝑆𝑤𝑤𝜕𝜕2 =  𝑆𝑆𝑤𝑤𝑤𝑤1𝑒𝑒
  (𝐶𝐶𝑓𝑓𝑏𝑏𝑤𝑤−𝐶𝐶𝑝𝑝𝑤𝑤) ∆𝜕𝜕

          (50) 
 

Moreover, Nourani et al [7] calculated Sw at a given 
overburden pressure using the following formula: 
 

𝑆𝑆𝑤𝑤𝑃𝑃2 =  𝑆𝑆𝑤𝑤𝑜𝑜1𝑒𝑒
  (𝐶𝐶𝑝𝑝−𝐶𝐶𝑓𝑓𝑏𝑏𝑜𝑜) ∆𝑃𝑃

          (51) 
   

 

Combining the Barometric and the Thermal Models 
 
The literature indicates that the electrical properties of the 
sandstones under study are affected by both overburden 
pressure and temperature. Previous research has shown 
that the combined effect of these factors on the 
sandstones' electrical properties is approximately 
equivalent to the sum of their individual effects, as 
reported by various researchers [16,17]. This suggests that 
while overburden pressure and temperature each have 
distinct impacts on the sandstones' electrical behaviour, 
their combined influence follows an additive trend 
[16,17]. Therefore, it has been assumed that predicting 
FRF and RI under specific overburden pressures and 
temperatures requires a systematic approach involving 
two distinct steps as shown in Figure 1. First, a constant 
temperature is maintained at ambient temperatures while 
the overburden pressure is manipulated. Step Two 
involves increasing the temperature of the sample while 
maintaining a constant overburden pressure equivalent to 
Step One.  
 

 
Fig. 1. Two-step process for estimating the FRF and RI at 
specific overburden pressure and temperature conditions have 
been assumed. Step One involves manipulating overburden 
pressure while maintaining constant temperature, followed by 
Step Two where the sample undergoes controlled temperature 
increase while keeping overburden pressure constant. 

 
First, the FRF and RI are predicted at the given 
overburden pressure and constant temperature using 
Equations (1) and (3) as follows: 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕1,𝑃𝑃2 

= 𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕1,𝑃𝑃1 
𝑒𝑒𝑚𝑚 (𝐶𝐶𝑝𝑝− 𝐶𝐶𝑏𝑏)∆𝑃𝑃                   (52) 

𝐹𝐹𝑅𝑅𝜕𝜕1,𝑃𝑃2 
= 𝐹𝐹𝑅𝑅𝜕𝜕1,𝑃𝑃1 

 𝑒𝑒  𝑛𝑛(𝐶𝐶𝑓𝑓𝑏𝑏𝑜𝑜−𝐶𝐶𝑝𝑝)∆𝑃𝑃
       (53) 

 
Next, the FRF and RI are predicted at the elevated 

temperature and constant overburden pressure by 
inserting 𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕1,𝑃𝑃2 

 and 𝐹𝐹𝑅𝑅𝜕𝜕1,𝑃𝑃2 
 from Equations (52) and 

(53) into Equations (26) and (49), respectively. 
Accordingly, Equations (54) and (55) predict the FRF and 
RI at the specified overburden pressure and temperature. 
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𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕2,𝑃𝑃2 
= 𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕1,𝑃𝑃1 

𝑒𝑒𝑚𝑚 �� 𝐶𝐶𝑝𝑝− 𝐶𝐶𝑏𝑏�∆𝑃𝑃+ (𝐶𝐶𝑏𝑏𝑤𝑤−𝐶𝐶𝑝𝑝𝑤𝑤) ∆𝜕𝜕�      (54) 

𝐹𝐹𝑅𝑅𝜕𝜕2,𝑃𝑃2 
= 𝐹𝐹𝑅𝑅𝜕𝜕1,𝑃𝑃1 

 𝑒𝑒   𝑛𝑛��𝐶𝐶𝑓𝑓𝑏𝑏𝑜𝑜−𝐶𝐶𝑝𝑝�∆𝑃𝑃+ (𝐶𝐶𝑝𝑝𝑤𝑤−𝐶𝐶𝑓𝑓𝑏𝑏𝑤𝑤) ∆𝜕𝜕�  
     (55) 

 
Furthermore, it is also possible to estimate the 

saturation of water at the specified overburden pressure 
and temperature by combining Equations (50) and (51), 
as follows: 
 
𝑆𝑆𝑤𝑤𝜕𝜕2,𝑃𝑃2 

= 𝑆𝑆𝑤𝑤𝜕𝜕1,𝑃𝑃1 
 𝑒𝑒   ��𝐶𝐶𝑝𝑝−𝐶𝐶𝑓𝑓𝑏𝑏𝑜𝑜�∆𝑃𝑃+ (𝐶𝐶𝑓𝑓𝑏𝑏𝑤𝑤−𝐶𝐶𝑝𝑝𝑤𝑤) ∆𝜕𝜕�  

     (56) 
 
Results and Discussion 

In a semilogarithmic plot passing through ∆𝑇𝑇 = 0, with 
𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕2 

= 𝐹𝐹𝐹𝐹𝐹𝐹𝜕𝜕1 
, 

𝐹𝐹𝑅𝑅𝐹𝐹2 
𝐹𝐹𝑅𝑅𝐹𝐹1 

 versus temperature difference 

leads to a straight line with slope 𝑚𝑚 (𝐶𝐶𝑏𝑏𝜕𝜕 − 𝐶𝐶𝑝𝑝𝜕𝜕) : 
 

𝑚𝑚 (𝐶𝐶𝑏𝑏𝜕𝜕 − 𝐶𝐶𝑝𝑝𝜕𝜕)  =  
Ln 

𝐹𝐹𝑅𝑅𝐹𝐹2 
𝐹𝐹𝑅𝑅𝐹𝐹1 
∆𝜕𝜕  

           (57) 

Using Equation (26), FRF can be predicted at any 
elevated temperature using the obtained term (𝑚𝑚 (𝐶𝐶𝑏𝑏𝜕𝜕 −
𝐶𝐶𝑝𝑝𝜕𝜕) ). Figure 2 shows the Ln 

FRF2 
FRF1 

 versus the temperature 

difference for four sandstone samples. The dataset has 
been extracted from published literature [18]. In Table 1, 
the term (𝑚𝑚 (𝐶𝐶𝑏𝑏𝜕𝜕 − 𝐶𝐶𝑝𝑝𝜕𝜕) ) were calculated based on the 
slopes of the lines in Figure 2. 

  
Fig. 2.  Ln 

𝐹𝐹𝑅𝑅𝐹𝐹2 
𝐹𝐹𝑅𝑅𝐹𝐹1 

 versus temperature difference. According to 

Equation (57), the term (𝑚𝑚 (𝐶𝐶𝑏𝑏𝜕𝜕 − 𝐶𝐶𝑝𝑝𝜕𝜕) ) were calculated by the 
slope of lines for four sandstone samples from literature [18]. 
 
Table 1. The calculated term (𝑚𝑚 (𝐶𝐶𝑏𝑏𝜕𝜕 − 𝐶𝐶𝑝𝑝𝜕𝜕) ) from the slope 

of the lines in Figure 2. 

 
Figure 3 illustrates the modelled FRF at elevated 

temperatures based on the values from Table 1. The FRF 

predicted by the model and the experimental data 
measured in the laboratory are very well matched. 

Fig. 3. Measured and calculated FRF at elevated 
temperatures for six sandstone samples [18]. 

The FRF increases as the temperature increases as 
predicted by Equation (26), which is in agreement with 
experimental results in the literature [15,17,19,20]. 
Using a similar approach for overburden pressure, in a 
semilogarithmic plot passing through ∆𝑃𝑃 = 0, with 
𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2 

= 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 
, 
𝐹𝐹𝑅𝑅𝐹𝐹2 
𝐹𝐹𝑅𝑅𝐹𝐹1 

 versus overburden pressure leads 

to a straight line with slope 𝑚𝑚 (𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑏𝑏) : 
 

𝑚𝑚 (𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑏𝑏)  =  
Ln 

𝐹𝐹𝑅𝑅𝐹𝐹2 
𝐹𝐹𝑅𝑅𝐹𝐹1 
∆𝑃𝑃  

           (58) 

Equation (1) can be used to predict FRF at any 
overburden pressure using the obtained term (𝑚𝑚 (𝐶𝐶𝑝𝑝 −
𝐶𝐶𝑏𝑏) ). In Figure 4, the Ln 

FRF2 
FRF1 

  versus the overburden 

pressure difference is illustrated for four samples of 
sandstone. Data have been derived from published 
literature [18]. Based on the slopes of the lines in Figure 
4, the term (𝑚𝑚 (𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑏𝑏) ) was calculated in Table 2. 

 

 
Fig. 4.  Ln 

𝐹𝐹𝑅𝑅𝐹𝐹2 
𝐹𝐹𝑅𝑅𝐹𝐹1 

 versus overburden pressure difference. 

According to Equation (58), the term (𝑚𝑚 (𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑏𝑏) ) were 
calculated by the slope of lines for four sandstone samples from 
literature [18]. 

Sample 𝒎𝒎 (𝑪𝑪𝒃𝒃𝒃𝒃 − 𝑪𝑪𝒑𝒑𝒃𝒃) (°C -1) R2 

S1 2.35 × 10−3 0.9997 
S2 2.01 × 10−3 0.9897 
S3 1.23 × 10−3 0.9924 
S4 1.79 × 10−3 0.9992 
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Table 2. The calculated term (𝑚𝑚 (𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑏𝑏) ) from the slope of 
the lines in Figure 4. 

Based on the values presented in Table 2, Figure 5 
illustrates the modelled FRF under overburden pressure. 
Model predictions and experimental measurements are 
very closely matched.  

 

Fig. 5. Measured and calculated overburden FRF for six 
sandstone samples [18]. 
 

For the purpose of illustrating the application of the 
developed combined FRF model, we assume that the 
value of FRF at 20 MPa and 100°C is desired for samples 
S1 through S4. FRF has been measured at 23.1°C and 1.44 
MPa at the initial temperature and overburden pressure in 
Figures 3 and 5 [18]. Therefore, the difference in 
temperature and overburden pressure is 76.90°C and 
18.56 MPa, respectively. The FRF was calculated in 
Table 3 based on measured FRF at base temperature and 
overburden pressure,  ∆𝑃𝑃 and ∆𝑇𝑇, the coefficients 
obtained in Tables 1 and 2, and using Equation (54).  
 

Table 3. The estimated FRF at 20 MPa and 100°C using 
Equation (54) and the obtained coefficients in Tables 1 

and 2. 
 
 

 
 
 
 

 

An understanding of the exact values of thermal 
expansion coefficients for bulk, thermal expansion 
coefficients for pores, as well as volume compressibility 
coefficients for bulk and volume compressibility 
coefficients for pores is valuable. Nevertheless, it is not 
necessary to know these values in order to calculate the 
product of cementation factor times the difference 
between pore and bulk volume compressibility 

coefficients, as well as the product of cementation factor 
times the difference between bulk and pore volume 
thermal expansions, which are necessary for the 
prediction of FRF by Equation (54). By measuring FRF 
under three different conditions (T1, P1), (T1, P2), and (T2, 
P2), one can obtain the parameters necessary to make the 
integrated FRF model operational. Additionally, the three 
FRF measurements are the same measurements that are 
usually conducted in the SCAL program when measuring 
capillary pressure by the Porous Plate method (PcRI test). 
In a PcRI test, FRF is typically measured at ambient 
temperature and 20 bar (T1, P1), then at ambient 
temperature and reservoir overburden pressure (T1, P2). In 
addition, the Rt is obtained at reservoir pressure and 
temperature. When the sample is saturated with brine, the 
PcRI measurement begins and therefore the first Rt 
measurement equals the Ro measurement. Thus, FRF at 
reservoir temperatures and pressures is also commonly 
available (T2, P2). In consequence, no additional 
measurements are necessary in order to make the 
integrated FRF model operational. 

Previous studies have yielded contradictory findings 
concerning the impact of temperature on the apparent 
FRF. While some researchers indicate an elevation in the 
apparent FRF with rising temperature [15,18,20,21], 
others [17,22–24] suggest a decrease. This inconsistency 
is primarily attributed to differences in the types of rock 
samples utilized and variations in their clay content [18]. 
The models developed in this study have the capability to 
provide explanations for both of these observed 
phenomena.  

The equations (37) and (38) indicate that the apparent 
FRF can increase or decrease as the temperature 
increases, confirming the experimental data in the 
literature. The two situations can occur in reservoirs with 
normal temperatures (T<200°C). First, FRF increases 
with increasing temperature for samples with low excess 
conductivity, which indicates a low clay content in the 
reservoir. Second, FRF appears to decrease with 
increasing temperature for samples exhibiting high excess 
conductivity, suggesting that the reservoir contains a 
significant amount of clay. 

In addition, for measurements conducted at 
temperatures above 400°C, which are more applicable to 
geothermal reservoirs, inequality (39) can be satisfied, 
and for that temperature range, the developed models 
predict an increase in apparent FRF with temperature. 
Consequently, the developed models provide 
comprehensive insights into the behavior of the apparent 
FRF under changing thermal conditions.  This study 
reconciles the conflicting findings of previous studies to 
gain a more nuanced understanding of how temperature 
influences apparent FRF. 

Figure 6 illustrates an example of predicting saturation 
exponents at 90°C for the data from literature [25].  Based 
on the saturation at 30°C, Equation (51) is used to 
estimate the saturation at 90°C. RI at 30°C at the 
calculated water saturation is then used in Equation (49) 
to calculate RI at 90°C. The predicted saturation exponent 
matches the actual value excellently with a precision of 
one decimal place. 

Sample 𝒎𝒎 (𝑪𝑪𝒑𝒑 − 𝑪𝑪𝒃𝒃) (MPa -1) R2 

S1 10.20 × 10−3 0.9833 
S2 1.70 × 10−3 0.9758 
S3 6.27 × 10−3 0.9858 
S4 3.02 × 10−3 0.9707 

Sample  𝑭𝑭𝑭𝑭𝑭𝑭𝒃𝒃𝟏𝟏,𝑷𝑷𝟏𝟏 
 𝑭𝑭𝑭𝑭𝑭𝑭@ 𝟐𝟐𝟐𝟐 𝑴𝑴𝑷𝑷𝑴𝑴 & 𝟏𝟏𝟐𝟐𝟐𝟐°C 

S1 40.75 58.99 
S2 12.64 15.23 
S3 39.50 48.78 
S4 17.12 20.77 
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Fig. 6. Example, saturation exponent calculated at 90°C using 
Equations (49) and (51). 
 
Conclusions 
 
This work defines new electrical resistivity moduli to 
express the temperature-dependent dependencies on 
electrical properties, analogous to the electrical resistivity 
moduli defined by Nourani et al. [7] (to express the 
pressure dependency of electrical properties in rock/fluid 
systems). Using available ambient measurements, high-
precision predictive tools have been developed to 
facilitate obtaining electrical properties at realistic 
reservoir conditions. Following is a summary of the main 
outcome of this study: 
 

• Mathematical models have been developed for 
predicting FRF, RI, and apparent FRF at 
elevated temperatures in order to develop a 
prediction technique. There are several 
parameters included in the FRF Model, 
including the FRF at ambient or initial 
temperature, the cementation exponent, the 
thermal expansion coefficients for bulk and 
pores, as well as the temperature difference 
between the desired temperature and the 
ambient/initial temperature. The RI Model 
includes RI at ambient/initial temperature, the 
saturation exponent, the pore volume thermal 
expansion coefficient, thermal expansion of 
formation brine and temperature difference 
between the desired temperature and 
ambient/initial temperature. 

 
• In order to verify the validity of the developed 

FRF models, their applications were conducted 
on actual core data obtained from existing 
literature. As a result of the validation, the FRF 
models were able to predict the behaviour of 
FRF for the investigated elevated temperature 
with less than 3% relative error. 

 
• Through the integration of these temperature-

dependent models with the ones introduced by 
Nourani et al. (2023) for predicting FRF and RI 
under overburden pressure conditions, a 
comprehensive framework for predicting FRF 

and RI was established. With this comprehensive 
approach, FRFs and RIs can be predicted for a 
wide range of reservoir conditions, including 
subsurface temperature and overburden 
pressure. 

 
The authors extend their gratitude to NORCE Norwegian 
Research Centre AS and Stratum Reservoir AS for generously 
granting permission to publish this collaborative paper.  
 
Nomenclature 
 
𝑎𝑎         Slope of the line in Equation (28), dimensionless 
𝑏𝑏         Intercept of the line in Equation (28), Ω-1m-1 
B          Volume concentration of sodium exchange cations 
associated with the clay, (Ω-1m-1)/(meq/ml) 
𝐶𝐶𝑏𝑏        Bulk compressibility, bar-1/MPa-1 

𝐶𝐶𝑏𝑏𝜕𝜕      Bulk volume thermal expansion coefficient, °C -1 
𝐶𝐶𝑓𝑓𝑏𝑏𝑃𝑃     Formation brine compressibility, bar-1 

𝐶𝐶𝑓𝑓𝑏𝑏𝜕𝜕     Thermal expansion of formation brine, °C -1 

𝐶𝐶𝑜𝑜        Brine-saturated rock conductivity, Ω-1m-1 

𝐶𝐶𝑝𝑝        Pore volume compressibility, bar-1/MPa-1 

𝐶𝐶𝑝𝑝𝜕𝜕      Pore volume thermal expansion coefficient, °C -1 

𝐶𝐶𝑤𝑤       Brine conductivity, Ω-1m-1 

∆𝑃𝑃       Confining pressure difference, bar/MPa 
∆𝑇𝑇       Temperature difference, °C  
𝜑𝜑         Porosity, fraction 
𝐹𝐹∗       Shaly-sand FRF (apparent FRF), dimensionless 
𝐹𝐹𝐹𝐹𝐹𝐹    Formation Resistivity Factor, dimensionless 
𝛾𝛾𝐶𝐶𝑜𝑜𝜕𝜕    Thermal rock conductivity modulus, °C -1 

𝛾𝛾𝐶𝐶𝑤𝑤𝜕𝜕    Thermal water conductivity modulus, °C -1 

𝛾𝛾𝑅𝑅𝑜𝑜𝑜𝑜     Rock resistivity modulus (RRM), bar-1 

𝛾𝛾𝑅𝑅𝑜𝑜𝑤𝑤     Thermal rock resistivity modulus (RRMT), °C -1 

𝛾𝛾𝑅𝑅𝑡𝑡𝑜𝑜     True resistivity modulus (TRM), bar-1 

𝛾𝛾𝑅𝑅𝑡𝑡𝑤𝑤     Thermal true resistivity modulus (TRMT), °C -1 

𝛾𝛾𝑅𝑅𝑤𝑤𝑜𝑜    Water resistivity modulus (WRM), bar-1 

𝛾𝛾𝑅𝑅𝑤𝑤𝑤𝑤     Thermal water resistivity modulus (WRMT), °C -1 

𝐻𝐻𝐶𝐶𝑅𝑅𝑅𝑅𝑃𝑃 Volume of hydrocarbon initially in place at 
reservoir conditions, m3 

m         Cementation factor, dimensionless 
n          Saturation exponent, dimensionless 
𝑃𝑃               Pressure, bar/MPa 
Qv    Equivalent conductance of sodium clay exchange 
cations, meq/ml 
𝐹𝐹𝑅𝑅        Resistivity Index, dimensionless 
𝐹𝐹𝑜𝑜        Resistivity of rock fully saturated w/brine, Ωm 
𝐹𝐹𝑡𝑡         Resistivity of rock partially saturated w/brine, Ωm 
Rw            Formation water resistivity, Ωm 
Sw            Water saturation, fraction 
𝑇𝑇               Temperature, °C 
𝑉𝑉         Volume of the reservoir, m3 

𝑉𝑉𝑏𝑏        Bulk volume, m3 

𝑉𝑉𝑝𝑝         Pore space volume, m3 

Vw            Volume of the formation brine, m3 
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