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Abstract. Machine and deep learning (ML/DL) have emerged as powerful tools for driving innovation in 
industry and sciences. Typically, a data-driven model trains on a large, centralized dataset to achieve 
reasonable prediction accuracy while still generalizing well to unseen data. However, data sharing can be 
challenging when collaborating across multiple groups because of privacy concerns or sheer data size. Here, 
we test a distributed machine learning framework using MS-Net, a deep learning model to predict the 
velocity field and permeability given a pore scale image of a porous medium - a fundamental task in digital 
rock physics. In the framework, known as federated learning (FL), a central server distributes copies of the 
central model to several clients, each client trains a model on its own set of training data, and the central 
server subsequently aggregates the client-side model parameter updates. We propose a set of geometric 
characterizations to test the quality of the training data quality without requiring the sharing of sensitive 
data. We successfully obtained the approval from participating companies (bp and Petrobras), conducted 
tutorials on the computational tools in the workflow, and trained the model. We report on the training 
performance of this framework using an established network design to predict velocity fields of imaged rock 
samples. 

1 Introduction 
Machine and deep learning (ML/DL) are now omni-
present tools for data-driven innovation in industry and 
sciences. Specifically in the field of digital rock physics, 
ML/DL models can accurately predict temporal and 
spatial phenomena in a variety of complex geophysical 
systems based on an image of the porous media (see [1, 2] 
for recent reviews). For example, the Prodanović research 
group successfully applied DL to predict 3D velocity 
fields in image data stored in the DRP using a 
convolutional neural network (CNN) approach named 
MS-Net [3, 4]. This work has been combined with 
diffusion for the prediction of concentration fields [5] and 
extended to electric current transport [6]. These 
approaches use segmented images as a starting point, and 
most notably, they constitute the only working DL 
prediction for fractured or otherwise heterogeneous 
media. 

One common hurdle to realizing the potential of 
ML/DL in digital rocks physics is that data-driven models 
train on large, centralized datasets and the datasets should 
be reasonably diverse. Data in digital rock physics are 
typically large in scale and at high resolution; due to 
innovations in imaging techniques, datasets are often GB 
to TB in size. Generally, there is no shortage of datasets, 

and we curate many open datasets in the Digital Rocks 
Portal (DRP) [7]. However, when collaborating across 
multiple groups, data sharing can be challenging because 
of export control regulations, business sensitivities, 
privacy concerns, large data volumes, formatting 
standards, and hardware differences. Most data remain 
behind firewalls. Additionally, in the case of traditional 
curve fitting, a learned model can still be effectively 
communicated and used by others via the functional 
relationship and its parameters; however, the same is not 
necessarily true for ML models or neural network 
parameters. In such cases, models often need to be 
retrained with new and different datasets, which is time-
consuming and some of the learning is ultimately lost. 

In recent years, decentralized training of ML models 
has emerged as a resource-efficient and privacy-
promoting alternative to centralized solutions. In 
particular, federated learning (FL) [8, 9] allows 
collaborative training of ML models without collecting 
massive amounts of potentially sensitive private data from 
the participating agents and, instead, exchanges the 
learned neural network parameters. Intellectual property 
concerns and export regulations may still hinder the free 
exchange of these network parameters; however, the 
extent to which these networks are subject to such policies 
ultimately reduce to contractual agreements between 
participating parties. While we later describe our 
encounters with some of these issues, the primary 
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motivation for this work focuses on the technical 
capabilities of FL. Those agents (i.e., clients) may be 
devices (known as a cross-device scenario) or institutions 
(known as a cross-silo scenario). 

An illustration of a typical FL system is shown in 
Figure 1. Training in FL systems is organized into rounds. 
In each round, the coordinator, which is a server, shares a 
copy of an ML model with a set of clients; the clients 
update the model on their local, potentially private and 
large datasets, and then report the updates to the server. 
The server then combines the individual model weights 
using a predetermined aggregation strategy, updates the 
weights of the central model, and redistributes copies to 
the clients for continued training. The end product after 
several rounds of training is typically the aggregated 
central model that has learned from the clients’ local 
datasets without the explicit transfer of the training data. 
In certain FL topologies, such as personalized FL, the 
product could be the local models that are tuned to the 
clients’ individual data distributions, but still contain 
general base knowledge from a global model. 

 

 
Fig. 1. A schematic of federated learning collaborative training, 
where data remains with clients while training the model, but the 
error is aggregated for simultaneous learning. 
 
Table 1.  The number of mentions of AI topics by search terms 
in major journals as of March 1, 2024. DL refers to deep 
learning, ML to machine learning, NN to neural network, and 
FL to federated learning. For FL, the number in parentheses 
indicates the number of actual implementations. 

 
FL remains largely unknown in geoscience 

applications. While many AI topics are mentioned in the 
literature, only three FL implementations (for rainfall 
prediction or seismic networks) currently appear in the 
major journals (Table 1). None are applied to digital rocks 
physics. Here, we revisit the MS-Net framework [3] for 
predicting the permeabilities of imaged porous medium 
samples under the context of FL with the motivation to 
generalize the model beyond the open data in the DRP.  

Establishing that datasets are AI ready is 
fundamental for any ML application [10], [11], and this is 

especially important when the data itself cannot be 
disclosed due to proprietary or access restrictions. AI 
ready data is complete, properly documented, unbiased, 
and has been assessed on features relevant to the scientific 
domain. We propose a set of benchmark measures based 
on Minkowski functionals [12], [13], a scale-independent 
heterogeneity classifier [14], and morphology drainage, as 
suggested by [15]. This basic information about the data 
was shared with the server (as well as presented in this 
paper) and provided an understanding of the quality of 
data used for training without sharing the datasets 
themselves. All clients used the same Python code for the 
benchmark measures and the same, open source lattice-
Boltzmann method solver, LBPM [15], to produce 
training velocity datasets with mutually agreed-upon 
input settings and boundary conditions.  

The proposed work accomplishes two goals. First, it 
shows how to foster collaboration among separate 
companies, without sharing sensitive data, which helps to 
accelerate technical advancements beyond this particular 
application in digital rock physics. The framework can be 
adopted for training on any spatial data from pore scale 
(this work) to field scale.  Second, in the context of digital 
rocks physics, this work allows for improved real-time 
assessment of flow and transport properties. When 
applied to large libraries of imaged rock samples, this 
work can accelerate uncertainty analysis workflows in an 
otherwise computationally expensive domain or allow the 
closer coupling of dynamic processes. Beyond bridging 
data privacy issues, the implications of this workflow 
ameliorate the difficulties of handling large data locality 
issues for any ML/DL training application. 

2 Methods 
2.1 Input data preparation 
 
Each client started from a set of 3D segmented images of 
porous media with two numerical labels identifying the 
pore-space and solid-phase. Two example cross-sections 
are shown in Figure 2. While segmentation itself is an 
important topic (for review, see [16]), the segmentation 
workflows are beyond the scope of this work, and each 
client was free to implement the segmentation 
independently. Each phase contains many separate 
objects that can be measured or characterized. Due to the 
complexity of porous media, there is little agreement on 
standard measures to characterize the porous media 
geometry and topology. Here, we chose Minkowski 
functionals as emergent key descriptors supported by 
theory [13]. We further use a heterogeneity classification 
curve recently introduced by our group and evaluated on 
DRP data [14]. 
 

Journal 
collection DL ML NN FL 

AGU Journals 10985 4056 4057 2 (0) 
Geoscience 
World Journals 5902 2973 3241 2 (1) 
Physical Review 
Journals 4171 7423 9537 6 (2) 
OnePetro 
Journals 2426 3393 1172 0 
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Fig. 2.  Cross-sections of two example training images, Gambier 
limestone and Castlegate sandstone from the Digital Rocks 
Portal [17]. The solid-phase is shown in black, and the pore-
space in white. 
 

Each client prepared at least 100 subdirectories, 
each storing an imaged dataset of the same nominal size 
(2563 spatial grid of points), following an agreed upon 
nomenclature: <1-digit client #>_<3-digit dataset #>_<3-
digit side length> (e.g., 0_003_256). Each dataset was 
stored using the same file format (volumetric tiff file), 
with a one-byte numerical value per spatial point, where 
0 denotes solid phase and 1 denotes pore space. To 
eliminate images with few meaningful training points, 
images were required to contain a minimum of 10% pore 
space values across the volume. In the same folder, 
metadata containing the voxel length (in microns) of the 
image were saved as a text file. 

Note that the data size (2563 numerical cells) in this 
exercise is not meant to be a representative elementary 
volume. Rather, we chose a standard smaller image size 
in order to focus on the performance of the FL framework 
itself.  We also note that, in MS-Net, we trained to predict 
the velocity field of an image before assessing the 
effective permeability. Various studies show that 
computed velocity fields, porosities, and permeability 
values can change when a digital rock sample has limited 
field of view or when the segmentation method does not 
fully capture the under-resolved regions of the image [21, 
22]. For example, a conservative segmentation threshold 
for a coarse resolution image could lead to an artificial 
increase in pore throat size, resulting in an overestimation 
of permeability. Additionally, under-resolved images may 
not represent details of the pore structure well, causing 
underrepresentation of available flow channels. The 
distributed nature of data collection in this experiment 
means that resolution, segmentation procedure, and field 
of view are not uniform, though this challenge is not 
unique to FL. In principle, any well-resolved image can 
participate. We later describe an assessment criterion for 
image resolution and segmentation using morphological 
drainage simulations. There were no assumptions made 
on the representativeness beyond a comparison with 
Darcy’s law to calculate effective permeability.  

Clients agreed to use LBPM [15] to compute the 
velocity fields using exactly the same input specifications 
and boundary conditions (see Appendix). We chose 
LBPM as it is open-source, scalable, and has both CPU 
and GPU implementations. Nevertheless, any simulation 
package for computing velocity fields could be used in 
principle. The extent to which the dataset collection 

should be standardized is somewhat task specific. For 
example, the use of, for instance, periodic boundary 
conditions (versus pressure boundary conditions) can alter 
the velocity field near the boundary and these images are 
relatively small datasets, we did not want those 
differences to play a role in the convergence of the model, 
though it is possible the boundary conditions would have 
no effect on permeability calculation. 

In theory, the need for data collection 
standardization should not vastly differ between FL and 
conventional ML settings. Issues tend to arise when the 
data between clients is not identically and independently 
distributed (non-IID) In essence, uniformly applied 
preprocessing techniques allow centralized ML models to 
handle non-IID training data more easily than FL models. 
FL mainly relies on local preprocessing, aggregation 
strategies, and model topology (e.g. personalized models, 
clustered FL, hierarchical FL, etc.) to handle non-IID 
training data. However, consistent and quality training 
data always helps ensure the reliability of the trained 
model.  

A universally used data format in digital rock 
physics does not exist. We agreed to use tiff as an input 
format as opposed to raw binary arrays (still common in 
applications, including DRP) as the format resolves issues 
such as machine endianness and data size across different 
hardware.   
 
2.2 Input data assessment 
 
For each dataset, an image characterization was 
performed via a common Python script on the client side, 
computing geometric characterization metrics as a proxy 
of data quality.  

First, the Minkowski functionals – pore volume, 
surface area, integral mean curvature, and Euler 
characteristic were computed using the open-source 
Quantimpy package [18]. For a body, 𝑌𝑌, with a 
sufficiently smooth surface, 𝛿𝛿𝑌𝑌, in 3D space, the 
Minkowski functionals are formulated as 
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where 𝑉𝑉, 𝑆𝑆, 𝐻𝐻, and 𝑋𝑋 are the volume, surface area, integral 
mean curvature, and integral Gaussian curvature, 
respectively. 𝑑𝑑𝑑𝑑 is a volume element, 𝑑𝑑𝑑𝑑 is a surface 
element, and 𝑅𝑅1 and 𝑅𝑅2 are the principal radii of curvature 
of 𝑑𝑑𝑑𝑑. The Gauss-Bonnet theorem relates 𝑋𝑋 to the Euler 
characteristic, 𝜒𝜒, by 
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𝑋𝑋 = 2𝜋𝜋𝜒𝜒. (5) 
 

The Euler characteristic is a topological invariant 
that describes the connectivity of an object. For a 3D 
object, 𝜒𝜒 can be expressed using the Betti numbers, 
 

𝜒𝜒 = 𝛽𝛽0 − 𝛽𝛽1 + 𝛽𝛽2, (6) 
 
where 𝛽𝛽0 is the number of connected components, 𝛽𝛽1is the 
number of loops, and 𝛽𝛽2 is the number of cavities. 

The functionals were computed for the pore-space 
in the image. By way of example, the computed 
Minkowski functionals for the two images in Figure 2 are 
presented in Table 2.  All images were padded with a 0 to 
isolate connected pore-spaces, disconnected from the 
volume boundaries. While LBPM contains similar 
characterizations, we chose QuantimPy for its Python 
implementation and so that the geometric 
characterizations need not be performed on high 
performance computing resources. All codes for 
characterizing the datasets are available on GitHub in the 
DPM Tools package [19]. 
 
Table 2. Minkowski functionals computed for the images in 
Fig. 2. The length, L, is assumed to be 1 voxel in the numbers 
reported below. 

 Mt. Gambier 
Limestone 

Castlegate 
Sandstone 

Porosity 0.436 0.206 
Surface area [L2] 8.32e6 1.20e7 
Integral mean 
curvature [L] 1.92e5 8.00e5 

Euler 
characteristic (no 
dimension) 

-2.85e3 -1.34e4 

 
Next, we classified the heterogeneity/homogeneity 

of each image, following recent work in the Prodanović 
group [14]. The Python implementation of the classifier is 
also available on GitHub [19] and analyzes the variance 
in porosity in a moving window of increasing radius. As 
discussed in [14], this classifier was previously used to 
classify segmented images from the DRP as 
homogeneous or heterogeneous with high accuracy, 
provided no fractures were present. An example of the 
classification is shown in Figure 3. The starting radius for 
the moving window for every image is based on the 
maximum inscribed sphere radius, and the reported radius 
is relative to the starting radius. 

Finally, the morphological drainage was computed 
using the LBPM software, following the algorithm 
proposed by [15, 20]. This is a fast proxy for a two-phase 
flow simulation of drainage [15, 20] and, in our 
application, gauges the inscribed radius of a 
representative pore-throat for the image. A discussion of 
the technique is available in [15], where the authors argue 
that for the two-phase flow simulation, the computed 
pore-throat radius must to be at least 5 voxels to resolve 
thin films. This discretization constraint is largely due to 
the numerics of the lattice Boltzmann solver, rather than 
that of the aforementioned finite resolution limitation of 
imaging techniques. Here, we define a crossover 

saturation as the point where the morphological drainage 
curve intersects a predetermined critical pore-throat 
radius (see Figure 4). Because of the relatively simpler 
finite differencing scheme for calculating single phase 
flow fields, we set the critical radius to 3 voxels and 
required that all training images have crossover 
saturations ≤ 0.40. The critical radius falls slightly below 
the lower threshold of 5 voxels where finite resolution 
begins to introduce bias to the computed flow measures 
as proposed by Saxena et al. [21, 22]. However, we found 
that too few samples were able to pass the crossover 
saturation at this critical radius to obtain a meaningful 
predictive model. This criterion assured adequate 
resolution in each image used in the FL training dataset. 

  

 
Fig. 3. The heterogeneity assessment curve provides a scale 
independent measure that quantifies the sample heterogeneity 
[14]. Here, the Mt. Gambier limestone would be classified as 
heterogeneous and the Castlegate sandstone as homogeneous. 
The zones have been predetermined based on data in the DRP. 
 

1

 
Fig. 4. Morphological drainage is a fast simulation available in 
both PoresPy and LBPM that provides information on whether 
the majority of the pore-throats, which control drainage, are 
resolved in the image. The red line indicates the radius of the 
throat deemed critical in our work. 
 

Each client assembled an aggregate text file to 
return to the server with the following scalars for each 
image: (1) the voxel length, (2) four Minkowski 
functionals (e.g., see Table 2), (3) the maximum inscribed 
radius in voxels (in order to normalize the heterogeneity 
curve in Figure 3), and (4) the x- and y-axis values of the 
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heterogeneity classifier curve. During aggregation, the 
server masked the names of the dataset using the 
following nomenclature: <client #>_<dataset #>_<image 
side length>. In the following results, the 
characterizations are shown in an aggregate, statistical 
form and never individually.  

The methods described in this section are based on 
the state-of-the-art in digital rock physics and are integral 
in nature. They result in fewer than 100 values that are 
used to uniquely describe each imaged sample, and these 
values are the only values shared with the server, apart 
from the MS-Net model weights. It is impossible to 
recover the original sample from these few metrics, 
ensuring data privacy and sensitives were preserved 
among the clients.  
  
2.3. Central Model for FL 
 
We employed a system of fully connected CNNs called 
MS-Net, illustrated in Figure 5, as our central model. 
Previously, this model was shown to provide accurate 
predictions of single-phase velocity fields and 
permeabilities in a variety of artificial and geologic 
porous and fractured media sampled from the DRP, as 
shown in Figure 6 [3].  

 
Fig. 5. The hierarchical MS-Net model architecture employed in 
this work for predicting permeabilities from segmented digital 
rocks images. Reprinted from [3]. 
 

 
Fig. 6. The permeability predictions by MS-Net on a wide 
variety of imaged porous and fractured media from DRP against 
their true values. To our knowledge this is the only method that 
correctly predicts fractured rocks (such as the examples shown 
in the inserts). Data reproduced from [3]. 
 
2.4. FL framework 
 
We implemented the FL framework using Flower [23]. A 
central server, located at Texas Advanced Computing 
Center, The University of Texas at Austin (TACC), 

distributed the central model to the clients. Each client 
then trained a model on its own set of training data. The 
central server subsequently aggregated the client-side 
model parameters (Figure 1). Clients included in this test 
are bp (Houston, TX), Petrobras (Rio de Janeiro, Brazil), 
and the Prodanović group at The University of Texas at 
Austin (Austin, TX).  

Prior to coordinating the FL training, we organized 
an internal workshop on geometric characterization 
methods, LBPM, and MS-Net to align on data formats, 
image assessments, and software packages to be used in 
the training.  
 
 
2.4.1 Aggregation strategy  
 
In the traditional FL workflow, the server plays the crucial 
role of maintaining the central model and coordinating 
model updates among the clients. The process by which 
the central server combines the clients’ models is referred 
to as aggregation. In parameter-based aggregation, the 
server combines the trainable parameters (e.g. weights, 
gradients, etc.) of the client model.  

Several aggregation strategies have been proposed 
in the literature [24]. Here, we chose Federated Averaging 
(FedAvg), one of the earliest and most commonly used 
strategies [8]. During aggregation, clients’ parameters are 
weighted and averaged to update the global model by, 
 

𝑤𝑤𝑠𝑠𝑡𝑡+1 ← �
𝑛𝑛𝑘𝑘
𝑛𝑛

𝑘𝑘∈𝑆𝑆𝑡𝑡

𝑤𝑤𝑘𝑘𝑡𝑡+1 

 
where 𝑆𝑆𝑡𝑡 is the set of clients selected in a particular round, 
𝑡𝑡, 𝑛𝑛𝑘𝑘/𝑛𝑛 is the weighting factor, which accounts for the 
number of a client’s data examples, 𝑛𝑛𝑘𝑘, and the total 
number of data examples, 𝑛𝑛, 𝑤𝑤𝑘𝑘𝑡𝑡+1 are the updated weights 
of a client, 𝑘𝑘, after a local training round, and 𝑤𝑤𝑠𝑠𝑡𝑡+1 is the 
aggregated global model. Because of the limited number 
of participants in this study, we aggregated all three 
clients after each communication round. 

While FedAvg is widely used and straightforward to 
implement, it has known convergence issues [25, 26] and 
several other aggregation strategies have been proposed 
to improve the convergence of FL. Some notable 
strategies include: Federated Proximal (FedProx) [27], 
which addresses prioritization of minimizing the global 
objective function over minimization of clients’ local 
objective functions; Federated Stochastic Gradient 
Descent (FedSGD) [8], where clients perform local 
stochastic gradient descent and the gradients are sent to 
the central model; SCAFFOLD [28], which uses variance 
reduction to addresses client-drift resulting from data 
heterogeneity; and MOON [29], which reduces 
discrepancies between local clients and the central server 
by introducing a contrastive loss as a regularization term. 
Nevertheless, we chose FedAvg for this experiment for 
simplicity and ease of implementation.  

The optimizer states play an important role in 
ensuring the effectiveness of clients’ local training, but 
exist on a level below the communication and aggregation 
processes. In a federated setting, the optimizers are not 
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typically synchronized across clients because they are 
specific to the local data distributions. It is important to 
note that proper model aggregation operates under the 
assumption that client networks encode similar feature 
representations at the same respective weight locations. 
Redistributing an aggregated model that contains feature 
encodings at weight locations overly different from the 
local model can confuse the local optimizer and severely 
degrade the training performance. Further discussion on 
prevention of variable feature encodings can be found in 
section 2.4.2.  Assuming scenarios where there are few 
clients with unchanging local data distributions, such as 
the case here, retaining optimizer states between training 
rounds can lead to faster model convergence.  

Finally, because of different security standards in 
each company, it was not possible to open a live SSL 
connection between the clients and the server during the 
training. We mitigated this issue by delivering client 
model weights to the server at TACC via SCP or FTPS, 
manually aggregating, then pushing the aggregated 
models back to the clients via SCP/FTPS. This practical 
limitation constrained our aggregation to 10 rounds with 
10 local epochs per round, for a total of 100 epochs.  
 
2.4.2 Mitigation of issues related to data 
heterogeneity 
 
Like traditional machine learning, the canonical goal of 
the introduced FL topology is to minimize the objective 
function of a single central model. Because the central 
model is trained with data located across several devices, 
one must consider the possibility of varying data 
distributions when designing an FL workflow.  

In FL settings, heterogeneity issues can manifest in 
numerous ways. Hardware heterogeneity is a common 
problem in practical applications; however, we do not 
address this here because the participating clients each 
have access to similar high-performance computing 
resources and communication is handled manually. Data 
space heterogeneity has shown to hinder local model 
performances and the global model convergence [25, 30, 
31, 32]. Mitigating the deterioration of training 
performance is an open area of research that goes beyond 
the scope of this study. However, we describe and employ 
some strategies that are fundamental to making FL 
possible. 

Successful training of a global model hinges on the 
ability to merge the client models’ weights or gradients. 
One must consider that different model instances encode 
different information in the same weight location. 
Although these differences in information encoding 
cannot be entirely avoided, its effects can be limited by 
appropriately designed workflows.  

We synchronize the model architecture and 
initializations. Though it is possible to federally train 
client models that differ from the central model (as is 
typically the case when training with small edge devices), 
using identical architectures between the server and 
clients ensures that the structure of layers, neurons, and 
connections remain the same across all participating 
clients. We also initialize the weights of the server and 
client models using the same random seed so that there is 

a stronger possibility that the models encode the data 
representations in a similar way.  

The choice of aggregation strategy also plays an 
important role. The aggregation strategy used here, 
FedAvg, implicitly balances the differences in 
information encoding by giving more influence on clients 
that supply more training data in the central model’s 
parameter updates. More robust aggregation strategies 
and regularization techniques can be used to prevent the 
client models from drifting too far from the global model.  

Discrepancies in the sizes and distributions of client 
training data manifest as non-IID. The degree to which 
non-IID datasets affect model training depends largely on 
the aggregation strategy. Models using FedAvg have 
known convergence difficulties when training on non-IID 
datasets. We focus our effort on preventing clients from 
supplying non-IID datasets by standardizing the training 
data collection process by using the same LBM simulation 
software with identical boundary conditions and post-
processing. We enforce minimum resolution and pore 
volume requirements to ensure the quality of simulations. 
Target velocity fields are normalized to enhance training 
performance. 

Additional measures may also be deployed to 
mitigate the effects of non-IID datasets. Synchronizing 
normalization statistics (e.g., in batch normalization), 
domain adaptation techniques, matching features 
statistics, and other alignment techniques aim to 
standardize feature representations, making parameter 
aggregation more effective. Some other aggregation 
strategies (e.g. SCAFFOLD) have been designed to relax 
the constraints on non-IID data and are readily available 
to be implemented in future work. 

As an interesting aside, personalized FL is an 
approach that allows each client to maintain a model 
instance that locally fine-tunes the global model with its 
own data distribution. This may provide a better solution 
to data heterogeneity as the global model can learn general 
features, while personalization addresses local specifics.  
 

3 Results 
3.1. Client data characterization 
 
The client data characterizations (see section 2.2) were 
aggregated to represent each client’s proposed datasets. In 
the spirit of privacy-preserving FL, we do not show the 
actual training datasets. In total, Petrobras contributed 
40% of the training samples, bp contributed 36%, and UT 
contributed 24% after filtering by the above-mentioned 
criteria.  
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The cumulative distributions of the four Minkowski 
functionals for each of the three participating clients are 
shown in Figures 7-10.  

Fig. 7. Porosity data CDF of participating clients. 
 

 
Fig. 8. Surface area data CDFs for participating clients. 

 
Fig. 9. Total mean curvature data CDFs for participating clients. 
 

 
Fig. 10. Euler characteristic data CDFs for participating clients. 
 

The porosity distribution (Figure 7) indicated that 
the Petrobras dataset (yellow) contained the largest 
proportion of tight samples, and the UT dataset (orange) 
had more samples with larger porosity values.  

Considering the porosity distributions, the surface 
area (Figure 8) and integral mean curvature distributions 
(Figure 9) suggested that the samples in the Petrobras 
dataset (yellow) contained the fewest pores, with little 
variation in pore shapes. In contrast, the bp dataset (blue) 
contained the largest variation in pore shapes.  

We observed a large difference in the distributions 
of Euler characteristic (Figure 10) between the UT dataset 
(orange) and the company partners’ datasets (blue and 
yellow). The larger Euler characteristic suggested that the 
samples contained many connected components. The 
difference in distributions likely can be attributed to the 
removal of disconnected pores during preprocessing for 
the UT dataset, which was not performed on the bp and 
Petrobras datasets. 
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Fig. 11. Cumulative distribution of the saturation at which 
morphological drainage curve crosses the inscribed radius of 
three for all clients. 
 

The crossover saturation provides a proxy metric for 
image resolution. Considering a critical crossover 
saturation of 0.4, the cumulative distributions (Figure 11) 
showed that the UT dataset (orange) had the largest 
proportion of well-resolved samples. The Petrobras 
dataset (yellow) contained the smallest proportion of 
samples with throat radii of at least 3 voxels. Note that this 
is not indicative of image quality but may be due to the 
nature of the rocks themselves in the datasets. 

Fig. 12. Homogeneity/heterogeneity classification curves for all 
client data (bp top, Petrobras middle and UT bottom). The black 
dashed line represents the boundary of the 
homogeneous/heterogeneous zones. Curves above this line are 
considered heterogeneous. The mean, ±1 standard deviation, 
and upper bound of the sample porosity variances are shown to 
highlight differences in dataset heterogeneity. 

In Figure 12, we show the statistical ranges of the 
homogeneity/heterogeneity classification curves for each 
client. The mean and ranges of the curves indicate that the 
bp dataset had the highest average degree of 
heterogeneity. However, the upper bound of the curves 
suggested that the Petrobras dataset contained several 
highly heterogeneous samples.  
 

 
3.2. Training without FL aggregation 
 
In order to establish a baseline, each participant trained 
MS-Net locally for 100 epochs. The same 
hyperparameters, initialization seed, and respective local 
datasets were used as the federated training to provide a 
more direct comparison. 

 
Fig. 13. Local model training and validation losses for each 
client. The same local training set was used in both local and 
federated training settings. 
 

The loss curves for each client’s local training are 
shown in Figure 13. All models showed continuously 
decreasing losses and relatively smooth convergence 
behavior. UT and bp training performed similarly, 
achieving loss values of less than 100. The Petrobras 
training was more unstable with loss values 
approximately one order of magnitude larger than those 
of UT and bp. This could be attributed to the presence of 
noisy or inconsistent data, which is apparent from the 
characterization assessment. 
 

 
Fig. 14. Locally-trained models’ permeability in lattice units2 
(LU2) predictions on an unseen test set from DRP for model 
assessment. The black dashed line has a slope of one and 
represents perfect predictions.  
 

Figure 14 presents the permeability predictions of 
each model on 25 blind test samples after 100 epochs of 
local training. The test set was not involved in training but 
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was comprised of sandstone samples from DRP. Because 
the UT dataset was similarly sampled from DRP, the data 
distributions were similar, which accounts for the closer 
predictions. Because of the federated setting, we did not 
access bp and Petrobras data for similar testing. The bp 
model tended to overpredict permeability values whereas 
the UT and Petrobras models both under-predicted the 
permeability.  
 
3.3 FL training results 
 
In this subsection, we present the results of the federated 
training. Note that the client and central models were each 
initialized with the same set of random parameters to 
mitigate differences in the model encodings of clients’ 
training data distributions. A transfer learning approach is 
another valid approach to addressing this problem where 
federated training begins from a previous, centrally 
trained model, such as the model in [3].  

 
Fig. 15. Training and validation loss curves for each client. 
Local loss peaks appear after each communication round, when 
the aggregated model is copied back to the clients. 
 

Figure 15 shows the loss curves for each client 
through the federated training process. The redistribution 
of the combined global model naturally induces local 
peaks in the client loss curve because of the interplay 
between minimizing the local cost function for the clients’ 
particular data representations and integrating feature 
encodings from other client models during model 
aggregation. When applied at scale, the FL loss curves 
have been shown to be almost as smooth as centralized 
training. At small scales, such as those envisioned for 
digital rock applications, heterogeneities in client datasets 
have larger impacts. Further steps need to be taken to 
lessen the impacts of non-IID training sets.  Advanced 
aggregation techniques and data augmentation and 
regularization can help the client models become more 
robust to the diversity in data distributions and reduce the 
occurrences of these peaks.  

All federated models saw improved loss curves 
when compared to their respective locally trained models. 
The federated UT client model saw the smallest 
improvement whereas the federated Petrobras client 
model saw the most significant. The bp client model 
achieved the smallest loss value.  

The magnitudes of the federated loss curves indicate 
further improvement is needed in model training before 
using them in a predictive capacity. The same approaches 
as traditional ML can be applied, including changes in the 
network hyperparameters and regularization. It is also 
important to note that we did not maintain the clients’ 
optimizer states between communication rounds. Though 
the local peaks in the loss function would likely still be 
present, the clients may see better convergence in local 
training epochs if the optimizer states were maintained.  
 

 
Fig. 16. Federated learning server and client models’ 
permeability predictions (in LU2) on the same unseen test set as 
used in the local model assessment. Shaded regions represent the 
95% confidence interval of the permeability prediction. The 
black dashed line has a slope of one and represents perfect model 
predictions. 
 

Next, we performed a blind permeability test 
(Figure 16) on the same 25 sandstone samples as the local 
training test (c.f., Figure 14). The permeability predictions 
for all three federated models saw substantial 
improvement over their locally trained counterparts. 
Again, the UT client model (orange) predicted closest to 
expectation, likely because the training data distribution 
was most like the test set. The bp client model (blue) still 
over-predicted the absolute permeability values, whereas 
the Petrobras (yellow) and aggregated server models 
consistently under-predicted them.  

The aggregated server model predictions were 
closest to, though consistently worse than, the UT model. 
This behavior is expected as it exemplifies the 
functionality of the FedAvg aggregation strategy. The 
Petrobras dataset contained the largest number of training 
samples, resulting in the largest weighting factor in the 
FedAvg aggregation strategy. On the other hand, the 
learned weights of the bp and UT models offset the server 
model’s tendency toward the largest contributing client. 
This results in a server model that falls within an 
intermediate range and highlights the need to better 
handle non-IID datasets. Further standardization of the 
input features and targets could help, though it may be 
overly restrictive. An aggregation strategy that can better 
handle non-IID datasets may be a more appropriate 
strategy for digital rock applications. Communicating the 
normalization parameters and retaining optimizer states 
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between training rounds could also help with model 
convergence. 

Finally, we see similar behavior across all models 
when comparing a particular sample prediction to their 
respective regression lines, suggesting that the models are 
encoding feature representations analogously. This 
further validates the efficacy of the aggregation step 
where parameters are simply averaged together. 
 
3.4 Model comparison 
 
Here, we demonstrated that FL can improve the 
generalizability of local models.  

 
Fig. 17. Comparison between the locally trained and federated 
client permeability prediction (in LU2) regression models.  
 
Figure 17 compares the regression models for the client 
permeability predictions. The regression analysis shows 
that the bp client model predicted closest expectation. All 
federated models showed improvements in generalization 
over their respective locally trained models, with the most 
substantial improvements at larger permeability values. 
Assessment of the target velocity fields and permeabilities 
would help explain this behavior, but these were not 
evaluated in this work. 
Table 3. Mean squared error between locally trained and 
federated client permeability predictions. 

Client Local Model Client Model 
bp 1.70e-08 5.39e-09 
Petrobras 3.71e-08 2.33e-08 
UT 5.82e-09 3.05e-09 

 
Table 3 lists the mean squared error of the 

permeability predictions for the 25 test samples between 
the locally trained and federated client models after 10 
training rounds. These confirm the findings shown in 
Figure 17, that all federated models achieved higher 
accuracies in their permeability predictions.  

There are a variety of likely reasons for the 
improvements in predictive performance. For example, 
the removal of disconnected pores in the UT dataset 
reduced the effect of negative velocities due to 
phenomena such as recirculation. During the model 
aggregation process, the recirculation behavior in 
disconnected pores could have been “unlearned” by the 
Petrobras dataset. In any case, the presented experiment 

confirms that exposing the clients to data that they would 
otherwise be unable to see can help improve the 
generalizability of their models.  

4 Discussion and Summary 
We have designed data assessment protocol and 
performed the first FL test in the specific application of 
predicting velocity fields and ultimately permeability 
based on digital rock images. We trust that the data 
assessment measures proposed are adequate for concise 
integral data description without sharing the data itself. 
We have not performed any assessment of velocity fields 
used in training beyond agreeing to the same algorithm 
and boundary conditions; this is reserved for future work. 

The experimental process presented some unique 
challenges that need to be addressed before performing 
larger scale experiments. Corporate and national export 
policies prevented the use of an open SSL channel for 
clients and server to communicate during the training (see 
Section 2.4), forcing aggregation to be done manually 
every 10 epochs for the total of 100 effective training 
epochs in this test. An open protocol could automate the 
process and allow for more frequent communication 
between the aggregation server and client training (i.e., 
less local epochs per round), improving global 
minimization of the loss function. Further, it handles the 
maintenance of the local optimizer states between 
communication rounds and allow for the training to be 
extended to more epochs. Nevertheless, this proof-of-
concept test demonstrated the promise of FL in training a 
model synchronously without the explicit exchange of 
training data.  

In the blind test, the results showed that the FL client 
models had greater capacity for generalization than their 
counterparts that were trained solely on local data. It is 
important to note that the blind test set was prepared by 
the UT client and consisted of data from the same 
sampling pool as their training and validation data - 
though there was no overlap between them. The test set 
consisted entirely of sandstone samples. At the time of 
this writing, bp has prepared its own test set and reported 
similar improvement in generalization for their own 
models. Petrobras is actively preparing their own test set. 
All models will be evaluated on these additional test sets 
as the method continues to be evaluated. These results will 
be presented in a future version of this paper. Finally, an 
evaluation of the model’s predictions on different 
lithologies would a more useful assessment of an FL 
model’s generalizability and is left for future work. 

We also plan to conduct several sensitivity analyses 
as we overcome communication challenges. These 
include varying aggregation strategy or the number of 
local training epochs before the aggregation is done, 
improving the central network architecture, and even 
altering the aggregation taxonomy. Future work will focus 
on implementing aggregation strategies that are more 
resistant to data heterogeneity and exploring applications 
of federated learning to different training tasks. 
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Appendix 
Boundary conditions for the LBPM simulation 
 
We impose consistent boundary conditions across 
different clients. We use constant pressure BCs to avoid 
boundary layer effects, that said the choice of BC is the 
users’ prerogative and is not expected to significantly 
affect the results of this study. The following provides the 
relevant input configurations for LBPM that were used for 
all training images: 
 
Domain { 
   Filename=“segmented.raw" 
   voxel_length=1.0 
   N = 256, 256, 256 
   n = 256, 256, 256 
   nproc = 1, 1, 1 
   ReadType ="8bit" 
   // key values set by image labeling 
   ReadValues = 0, 1 
   WriteValues = 0, 1 
   // boundary conditions 
   BC = 3 
} 
MRT { 
   timestepMax = 100000 
   tau = 1.0 
   F = 0.0, 0.0, 0.0 
   din = 1.001 
   dout = 0.999 
   tolerance = 0.00001 
} 
 
FL comparison with a local model trained with all 
datasets 
 
We are unable to perform a direct comparison between the 
FL model and a local model trained with all datasets 
supplied in this study as we agreed not to transfer any of 
the training samples provided by bp and Petrobras. 
Instead, we show results of some preliminary work 
conducted prior to this experiment using only open-access 
data from DRP. 
 In this study, we compare the training performances 
of four FL models containing two participating clients 
each with that of a centralized model that sees the exact 
aggregate training set (Figure 18). The model used in the 
preliminary study is identical to the one used in this 
experiment.  
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 18. Comparison between the locally trained and federated 
model training on identical aggregate datasets.  
 
 We observe that the overall training performance of 
the baseline model is maintained when applied in a 
federated setting.  
 
Timing profile and comments on scalability 
 
As part of the preliminary study, we simulated an FL 
workflow with three clients and computed the average run 
time over 10 runs on a desktop computer for each major 
step in the FL algorithm and normalized by the total time 
to perform equivalent centralized training (Figure 19).  

 Fig. 19. Average timing profile of simulated FL workflow 
with three clients over 10 runs on a desktop computer for each 
major step in the FL algorithm. Averaged times are normalized 
by the total time to perform equivalent centralized training  
 

FL requires some additional communication 
overhead over centralized training. The impact of this 
overhead heavily depends on the size of the model and FL 
hyperparameters.  

We have not directly tested the scalability of FL for 
digital rocks applications; however, the workflow has 
already been widely applied across the technology and 
medical industries, often with thousands of clients. Some 
issues have already been identified when applying this 
framework on a large scale. These include diverse 
hardware capabilities leading to straggler clients, 
bandwidth limitations and network latency due to 
increased communication overhead, maintaining training 
data representativity, and increased likelihood of 
adversarial attacks. 
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