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Abstract. Digital Rock Physics (DRP) technology offers a faster and cost-effective approach to obtain 
simulated relative permeability curves that can provide reservoir engineers with additional petrophysical 
inputs for their simulations.  
Recent works of Regaieg et al. 2023 [1] have demonstrated the impact of using large pore network 
simulations coupled with fast, and practical, pore-scale wettability characterization for enhancing the 
predictive power of DRP simulations to compute relative permeability curves. Although fast, this wettability 
experiment is still the bottleneck of DRP simulations workflow as it takes around three-four months whereas 
the imaging and numerical simulations take around two weeks.  Therefore, understanding the variability of 
wettability across a reservoir is crucial to assess how often the wettability anchoring experiment is needed 
to estimate relative permeability across the reservoir.  In this work, we have applied the same DRP workflow 
on two reservoir sandstones (representing two different lithotypes of rocks) from the same well in an 
operational context. Pore-scale wettability characterization (such as the fraction of oil/water-wet pores, 
correlation of wettability to pore-size etc.) and anchoring information (for e.g., estimation of remaining oil 
saturation, capillary-end effect, measurement of permeabilities at end-points) obtained from both samples 
revealed two distinct models of mixed-wet type of wettability: MWS (Mixed-wet Small) & MWL (Mixed-
wet Large). Using the relevant range of parameters for each wettability type, we performed experimental 
design studies to run thousands of flow simulations on very large pore network models for both samples. 
Results show the subsequent impact on flow simulation results and reinforce the importance of fast 
wettability characterization for DRP simulations, especially when the assumption of similar wettability 
cannot be justified across the well or reservoir due to lack of prior knowledge or experience. 

1 Introduction  
To meet the growing demand for energy in a fair and 

responsible manner, oil and gas production must be fast 
and efficient in terms of costs and emissions. In this 
context, accelerating petrophysical synthesis via digital 
approach that relies less on extensive SCAL experiments, 
can play a vital role in rapid appraisal and development of 
oil fields. Digital Rock Physics (DRP) offers such a cost-
effective and efficient approach to computing relative 
permeability curves for rock/fluid systems. While the 
potential of DRP has been recognized for well over two 
decades, truly predictive yet industrially practical 
solutions have been elusive until recently [1,2]. These 
recent works of Regaieg et al. have demonstrated the 
predictive power of DRP to obtain relative permeability 
by combining large simulations with innovative 
wettability anchoring experiment for a mixed-wet (MW) 
Bentheimer formation [1] as well as for a Reservoir 
Sandstone [2].  

It is well known that wettability strongly affects 
relative permeability [3]. It plays a pivotal role in 
modelling of multiphase flow as it governs capillary 
forces and order of invasion. Indeed, accurate 
characterization of wettability has been identified [4-7] as 
one of the most complex and important steps for reliable 
prediction of multiphase properties using simulations. 
Traditional wettability tests, such as the Amott-Harvey 
tests are time-consuming and resulting qualitative 
description of wettability such as water-wet, oil-wet, or 
mixed-wet often lack the necessary detailed pore-scale 
insight required for accurate simulations. The situation is 
even more complex for mixed-wet wettability [8], which 
is the case for most oil reservoirs. A higher number of 
uncertain parameters remain, especially for mixed-wet 
cases as the contact angles, the fractions of OW (oil-wet) 
and WW (water-wet) pores, wettability spatial correlation 
and wettability radii correlations are all important 
parameters that could impact the simulation results. 
Simulation studies [9,10] that have used wettability 
distributions obtained from in-situ Micro-CT experiments 
[11,12], have shown that random allocation of contact 
angle distributions and random spatial wettability 
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assumptions lead to poorer predictions of relative 
permeability, particularly for mixed-wet media.  

Indeed in-situ contact angle measurements using X-
ray micro-CT has gained traction in recent years. 
However, these measurements are dependent on three-
phase contact line region (that are sensitive to image 
resolution and segmentation pixelation) and involve 
manual [13] or intensive image processing [12,14] that are 
unsuitable for industrial applications. Insufficient 
resolution can lead to contact angle values close to 90 
degrees, accompanied by large standard deviations [15]. 
Moreover, contact line pinning effects are included in 
automated contact angle measurements which are 
different from the advancing/receding contact angles 
needed in PNM simulator. To circumvent these 
challenges, an innovative DRP simulation anchoring 
experiment was developed [1] for a rapid and 
straightforward implementation within an industrial 
workflow. In fact, contact angles are not directly 
measured from image analysis in our approach. Instead, 
indicative ranges of advancing contact angle values are 
obtained from the observed volumes of imbibed oil/water 
during spontaneous displacement steps, and the presence 
of capillary end-effect in the sample. Additionally, for 
mixed-wet systems, visual screening of the pore 
occupancies during the Amott-like DRP wettability 
experiment also allows us to assess other parameters like 
fraction of OW/WW pores, type of MW model and spatial 
correlation lengths where applicable as shown previously 
in [1]. 

Despite the solid starting point for simulations using 
the parameters described above, there remains a 
significant uncertainty in these inputs. This is why we also 
developed a statistical uncertainty workflow [16] that 
varies the uncertain pore network simulation parameters 
to run thousands of simulations. This exposes the 
resulting dispersion in simulated relative permeability 
curves, which we then constrain using fast measurements 
(of permeabilities and saturations at end-points) made 
during the anchoring experiment. This approach has led 
to predictive DRP Kr results that we have validated 
previously with SCAL measurements [1,2]. However, 
while it is interesting and faster than traditional Amott 
measurements, it is still a bottleneck in the current DRP 
workflow as it adds three-four months to a simulation 
workflow that could otherwise be completed in two/three 
weeks. Assessing how often the wettability experiment is 
needed, and its impact on reliability of DRP relative 
permeability simulations, is therefore crucial as it can 
significantly increase the number of rock type 
characterizations during field development (especially 
when same wettability can be assumed across different 
facies).  

A first case of such extrapolation has been 
demonstrated in [2], where one wettability experiment 
was performed, and assuming the same wettability for 
other facies in the reservoir, new relative permeability 
simulations were conducted for another rock facies in two 
weeks. Comparison to SCAL validated these results and 

provided more confidence. However, the wettability type 
in [2] was fractional-wet (i.e.  contact angles are not 
correlated to the size of the pores) and porosity-
permeability of the two rocks studied were very close. 
Therefore, more tests were recommended especially for 
cases where wettability is correlated to pore size.     

To investigate this further, we have applied the same 
DRP workflow on three reservoir sandstones 
(representing different lithotypes LT1, LT2 & LT3, and 
bigger permeability range) from the same well in an 
operational context. The study was set up as follows: 

(1) DRP wettability anchoring experiment was 
performed on high permeability rock sample 
(LT1). Mixed-wet Small (MWS) type wettability 
was found, and relative permeability simulations 
were run for the relevant range of parameters. 

(2) A second rock sample (LT2) with similar high 
permeability, mineralogy and pore size 
distribution was used to test the same wettability 
assumption found in LT1. Results were compared 
with available SCAL measurement on a sister 
sample. 

(3) Another DRP wettability anchoring experiment 
was performed on tighter rock sample (LT3). 
Mixed-wet Large (MWL) type wettability was 
found, and relative permeability simulations were 
run for the relevant range of parameters. 

(4) Wettabilities and networks were then used 
interchangeably to assess the impact on Kr 
simulations due to assumed vs. measured 
wettability, thus extending our study to a case 
where wettability is correlated to pore radii. 

2 Materials and methods  

2.1. Samples  

In this work, we have used three reservoir sandstones 
from the same well. In terms of sedimentary facies, both 
are characterized as massive fine to medium high density 
turbiditic sand. All three rocks have similar minerology, 
composed primarily of quartz (88 – 93%). Further 
lithology classification separates them into three 
lithotypes that we will refer to as LT1, LT2 and LT3. 
Where, LT1= clean tectosilicates (permeability range 
greater than 1000mD), LT2=clean tectosilicates 
(permeability range around 100 mD - 1000mD) and LT3 
= tectosilicates with slightly shaly texture (permeability 
range in few hundreds of mD). Sample dimensions and 
petrophysical properties are shown in Table 1. Cross 
section image of the 10mm diameter mini-plugs at 5.3 µm 
pixel resolution acquired using Zeiss Versa 520 
microtomograph are shown in Figure 1. The 
permeabilities shown are measured physically, and the 
porosities have been determined through image 
processing using differential imaging [17] for LT1 and 
LT3. Amount of sub-resolved porosities are also 
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indicated, showing that higher percentage of unresolved 
pore in LT3 at the same imaging resolution. For idea on 
representativity, we can also note the porosities (Φtotal_HE) 
for samples from same depth and lithotype evaluated at 
the plug (diameter = 38 mm) scale using Helium 
porosimeter. Φtotal_HE: for LT1= 24 %, LT2=19.4 %, 
LT3=17.6%.  

Table 1. Sample properties. 

Sample D 
 (mm) 

L 
(mm) 

Kw  
(mD) 

Φtotal 

(%) 
Φsub 

(%) 
Reservoir 
rock LT1 10 15 4650 

+/- 400 21.9    ~ 3.8 

Reservoir 
rock LT2 10 16 1813 

+/- 200 19.5    N/A 

Reservoir 
rock LT3 10 17 165 

+/- 10 19.7    ~ 8.1 

 

 
Fig. 1. Cross section image of the 10mm diameter mini-plugs 
(left) LT1 and (right) LT2 at 5.3µm pixel resolution acquired 
using Zeiss Versa 520 microtomograph. Average pore sizes of 
LT3 are visibly smaller than LT1. 

 
Fig. 2. Comparison of pore throat size distribution obtained from 
pore network models of LT1, LT2 and LT3 

Pore throat size distributions obtained from extracted pore 
network models confirm the smaller pore sizes seen in 
LT3 image (Figure 2). These information show that LT2 
and LT1 are closer in permeability and pore size 
distribution compared to LT3, justifying selection of LT2 
as a first candidate for testing the same wettability 
assumption as LT1. 

2.2. Enhanced Super Resolution images and 
large-volume pore network extraction  

A typical DRP simulation workflow begins with micro-
CT image acquisition of rocks. Acquired images are then 
segmented to differentiate the rock from the pore space. 
The identified pore space is finally used to perform flow 
simulations to calculate advanced rock properties like 
relative permeability and capillary pressure. Research [18, 
19] shows that well-characterized pore space geometry 
leads to good performance of flow simulators. However, 
as with all imaging based workflows, there is an inherent 
trade-off between acquisition speed, scanned volume size, 
and obtained resolution. Higher resolution limits field of 
view and vice-versa, impacting the representativity of 
rock sample volumes used in simulations.  

 In  an effort to bypass this compromise, we have 
implemented Enhanced Super Resolution Generative 
Adver-sarial Network (ESRGAN) method [20]  with 
some adjustment to adapt it to micro-CT images (more 
details in [20]). The approach includes a training and 
inference step. We have made the training parallel using 
multiple nodes and multiple GPUs in each node. The 
training is performed using two scans (at low and high 
resolution) of the same spatially registered volume. 2500 
crops of 384*384 pixels images are made to form the 
training dataset. Upon completion, the trained model is 
applied on a large-volume low resolution image to 
enhance the image resolution by a factor of 4. Low 
resolution values= 10.6µm, 10.6µm and 12µm for LT1, 
LT2 & LT3 respectively. Resolution after enhancement= 
2.65 µm, 2.65 µm and 3 µm for LT1, LT2 & LT3 
respectively. Generated super-resolved images were of 
approximately 3300x3300x3300 voxel in size. 

 Figure 3 showcases the results obtained through 
Factor 4 resolution enhancement, demonstrating high 
perceptual quality that effectively captures intricate rock 
textures and previously unresolved clay features in the 
low-resolution image. We have previously assessed the 
quality of such super-resolved images by comparing 
petrophysical metrics for rock images [2, 21]. 

 To segment the super resolved images, we utilized the 
2D Trainable WEKA Segmentation method [22], which 
employs the Random Forest (RF) machine learning 
algorithm. Previous research [23] shows that with 
experienced training, Trainable WEKA Segmentation 
outperformed seven other image-processing pipelines 
without the need for prior filtering. Benchmark study 
conducted by Reinhardt et al [24] further reveals that RF-
based approaches benefit from lower user bias compared 
to other machine learning and conventional segmentation 
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techniques, thanks to continuous interaction between 
experienced users and the RF classifier. 

 

Fig. 3. Comparison between low resolution and super 
resolution cropped images of reservoir rocks. Images have 
been enhanced by a resolution factor of four. Low resolution 
values: 10.6µm, 10.6µm and 12µm for LT1, LT2 & LT3 
respectively. Resolution after enhancement: 2.65 µm, 2.65 µm 
and 3 µm for LT1, LT2 & LT3 respectively 
 

 Pore network models do not conduct flow simulations 
directly on the segmented images. An extraction step 
simplifies the  3D image to represent geometric and 
topoligal information of the underlying pore skeleton.   
Such large images generated from super resolution need 
efficient treatment to avoid memory limitations. This has 
been managed by using an in-house stitching algorithm 
[21]. For the individual extractions, we utilized a pore 
network extraction platform called GNextract, developed 
in collaboration with Imperial College London [25], and 
built a larger network by combining overlapping sub-
volumes of extracted networks. With this methodology, 
we extracted one pore network each for LT1 (ΦSR=20.8%, 
Kabs=3.6 D) and LT2 (ΦSR=18.8%, Kabs= 2.3 D), and, five 
pore networks for LT3 to account for slightly greater 
heterogeneity observed in the sample (ΦSR= 14.5 - 15%, 
Kabs= 110 – 225 mD), where ΦSR is porosity of super-
resolved images and Kabs is simulated absolute 
permeability. LT1 and LT2 networks had around 1.5 
million elements each, representing a physical volume ≈ 
8.5 mm3. Each LT3 network had on average 2.4 million 
elements and represented a physical volume ≈ 4.8 mm3. 

 

2.3. Wettability anchoring experiment 

As discussed earlier, wettability characterization plays 
key role in making pore network modeling simulations 
more predictive, and we have developed a fast DRP 
wettability experiment to better characterize wettability at 
pore scale. At its core, the experiment is basically a series 
of spontaneous and forced displacement cycles using 
relevant fluid pairs similar to the known SCAL Amott 
wettability experiment. The key distinction is the 
utilization of Micro-CT images to capture the different 
displacement steps, which allows direct visual 
investigation at the pore-scale.  

 In this study, an upgraded version of the previous 
wettability anchoring experiment protocol (described in 
details in [1,2]) has been followed for both LT1 and LT3 
samples. The upgrade considers the recommendations 
highlighted by the experimental investigations from our 
SCAL laboratory [26]. The main motivation for the 
upgrade is to avoid dopants in formation brine during 
ageing process with dead oil (DO) as dopants can impact 
the wettability alteration process. Details of the upgraded 
experiment have been described in submitted manuscript 
SCA2024-1025 [27].  

 Two wettability experiments were performed in this 
study: one for sample LT1 and another for sample LT3. 
The same fluids (brine composition, dead oil, and mineral 
oil) have been used in both experiments. We used 
reservoir dead oil (DO) for the aging processes and 
mineral oil (Marcol 52) for displacement steps. The 
experiment commences by mounting the sample into a 
flow cell under a net confining stress of 90 Bars. The 
initial step involves achieving the initial water saturation 
(Swi) viscous displacement with M52 and highly doped 
brine. Image acquired at this step is used for assessment 
of the Swi saturation distribution. Next, instead of ageing 
the sample like in the previous workflow, the plug is 
cleaned again and full saturated with formation brine 
without any dopant. This is the key additional step that is 
introduced in the upgraded wettability experiment. 
Permeability measurement is re-checked and primary 
drainage is re-performed by viscous flooding using M52 
by ensuring the same flow parameters as the previous 
primary drainage (flowrates, gradient pressures). At the 
end of this step, we check that we obtain similar Ko(Swi) 
as before. Another image at this step is useless as no 
contrast can be observed between brine and oil. It is 
assumed that for similar Ko(Swi), flowrates and gradient 
pressures, same pore occupancies are obtained for the two 
Swi establishment steps (with and without dopant in 
brine).  

 The mineral oil is then replaced with toluene and 
subsequently with dead oil at 90°C. Afterwards, the 
sample is left to age for 1 month at 90°C, during which a 
total of 10 pore volumes (with a change of injection 
direction after 5 pore volumes) was injected to avoid any 
gradient on wettability distribution. At the end of the 
ageing process, Kro(Swi) with dead oil is measured, the 
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temperature is decreased to 60°C and only 1 pore volume 
of toluene is injected to replace dead oil without impacting 
the actual plug’s wettability. It is followed with the 
injection of at least 6 pore volumes of M52 to replace 
toluene and the decrease of temperature till ambient 
temperature. 

 Once the temperature is reduced and the replacement 
is completed, spontaneous imbibition phase is initiated 
using a one-end-opened protocol. To be able to visually 
track saturations, a lightly doped formation brine is 
introduced to the sample for all subsequent steps as it no 
longer impacts the already altered wettability. Saturation 
changes are tracked via image processing in both the 
resolved and unresolved part of the porosity using 
approach described in [28]. During spontaneous 
imbibition, water spontaneously infiltrates the sample 
from the bottom face while oil is expelled from the same 
side, establishing a counter-current imbibition 
phenomenon. To ensure controlled conditions and a 
continuous contact between water and the bottom face of 
the rock, we use a water leaching process with an 
extremely low capillary number (8x10-9) to remove the 
generated oil from the diffuser without inducing forced 
water flow into the sample. 

 After the spontaneous imbibition, a forced imbibition 
at very low capillary number (1E-08) to visualize and 
quantify saturation profiles on the capillary end-effect 
(zone of zero capillary pressure) is performed. Finally, 
forced imbibition is continued at a high capillary number 
(1E-05) to approach the residual oil saturation. At the 
conclusion of each phase of the experiment, micro-CT 
acquisitions are conducted to capture detailed imaging 
data. This enables us to have valuable information about 
the fluid distribution within the sample at different stages 
of the experiment. 

2.4. Wettability experiment interpretation for 
simulation inputs 

Images acquired during the wettbaility experiment are 
processed to obtain saturation profiles. Images before and 
after the two-weeks long spontaneous imbibition show 
(Figure 4) that water imbibed in both LT1 and LT3 
experiments, but the pore sizes invaded were different in 
each case (visible in Figure 4 zoomed section and 
illustrated more quantitatively later in section 2.4). 

 Water saturation increased from 15% at Swi to 65% 
during spontaneous imbibition for LT1 sample. In 
comparison, lower water saturation increase was noted in 
LT3, where the water primarily went into smaller pores 
and saturation increased from 20% at Swi to 40% during 
spontanous imbibition. As water can only imbibe through 
the connected water-wet pores, and that wettability of 
pores where trapping occurs would be unknown, it is 
worth noting that volumes computed essentially provide 
the minimum fraction of pores that is WW. Furthermore, 

the low flow-rate forced imbibition step allows us to 
observe any capillary-end effect at the sample outlet. 

 
Fig. 4. Images showing saturation states before and after 
spontaneous imbibition in LT1 and LT3.   

 

Fig. 5. Water saturation profiles for forced imbibition low- and 
high- flow rates. The low-flow rate investigation is only 
interesting at the sample outlet, to observe capillary end-effect 
presence, hence only partial image of the sample is acquired for 
this step. The high-flow rate shows remaining oil saturation 
(ROS) profile for the full length of the sample. 

 Both samples display a degree of capillary end-effect 
to oil (Sw profiles shown for low flow rate forced 
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imbibition in Figure 5), indicating presence of OW part in 
the pore network. In addition to the volumes of water 
imbibed during the spontaneous imbibition steps, the 
saturation of oil at the outlet (where Pc=0) further helps 
us characterize the oil-wet fraction in the system. Both 
these observations help us draw a range for the suitable 
fraction of WW/OW pores for the network simulations. In 
reality however, there are some uncertainties that need to 
be taken into consideration: 1) due to imaging artefacts, 
some end-slices needed to eliminated from the 
tomographs during saturation quantification and 2) as the 
samples used in this study were semi-unconsolidated in 
nature, the sample radius close to the outlet was uneven, 
leading to additional uncertainty related to the outlet 
location. Extrapolated values for Sw@Pc=0 are therefore 
noted as 60% for LT1 and 50% for LT3. An uncertainty 
bracket (of +/- 10%) is added to take this into 
consideration. The Sw@Pc=0 are then used as a rough 
selection criteria for fast PNM simulation sensitivity 
studies on the respective networks to find out the range of 
suitable OW/WW fractions that are needed to achieve 
this. Final range for fraction of WW pores used in the 
simulations for the LT1 and LT3 networks are shown in 
Table 2.  

 Although there is an oil-wet part in the sample, save 
a few odd pores, virtually no oil imbibition was observed 
during the two-weeks long spontaneous drainage for both 
samples. As the analysis does not directly provide contact 
angles values, the observed capillary end effect indicating 
oil wetness and the virtually undetectable oil imbibition 
during spontaneous drainage suggest that a considerable 
number of the oil-wet pores have receding contact angles 
below 90°. Or that stronger OW pores if present, are few 
and predominantly disconnected.  Thus, we selected 
medium to low oil-wet contact angle values to represent 
the mean for normal distribution used in the simulations. 
Standard deviation to the mean provides tail values that 
can account for few strongly OW pores.  

Figure 5 also shows the Sw profile at remaining oil 
saturation (ROS). Given the significant fractions of water-
wet parts detected in both LT1 and LT3, the lower ROS 
values are another indication of the sample’s mixed 
wettability. Additionally, these experiments also provided 
end point measurements. Based on the uncertainties 
related to Sw quantification and measured permeabilities, 
envelopes are used for the simulation’s selection process. 

• LT1: 0.3 < Krw @ ROS < 0.6  
• LT1: 0.15 < Sor < 0.21 
• LT3: 0.25 < Krw @ ROS < 0.5 
• LT3: 0.16 < Sor < 0.3 

 As both samples exhibited mixed wet pores, it was 
important to identify the wettability model type: Some 
authors [29] proposed 3 models: Fractional-wet, Mixed-
wet small and mixed-wet large models. Figure 4 shows 
water-wet (WW) pores in blue for both LT1 and LT3 
samples. We recall that oil that imbibes into the system in 
spontaneous drainage does not have access to the full rock 
as a part of the porosity is already filled with oil. 

Therefore, we propose to perform this analysis on the 
water-wet pores that had access to all the pore space 
during the spontaneous imbibition. Figure 6 shows the 
volumetric fraction of water-wet pores as a function of the 
pore radii. The plots clearly reveal two distinct models of 
mixed-wet type of wettability: MWS (Mixed-wet Small) 
for LT1 & MWL (Mixed-wet Large) for LT3. 

 
Fig. 6. The water-wet volumetric fraction as a function of the 
pore radius showing correlation of wettability with pore size. 

2.5. Pore Network Simulation and statistical 
workflow 

Using the extracted pore networks and relevant 
wettability inputs, we proceeded to conduct two-phase 
flow simulations for all three rock networks. For 
simulations, we used DynaPNM, which is TotalEnergies' 
proprietary multiphase pore network simulator, as 
described in reference [30]. The simulator is used in 
quasi-static mode as all the cases that we study in this 
paper are capillary dominated.  

 Initially, the pore network is filled with water. Next, 
a primary drainage process is simulated to establish the 
target initial water saturation (Swi). Since the network is 
assumed to be water-wet, oil injection follows an invasion 
percolation regime. Low Swi values can be achieved 
because water can escape through the wetting layers. 

  After primary drainage, a waterflood occurs 
following an aging process that changes the wettability of 
oil-filled pores. The fraction of these oil-filled pores in the 
network, along with a range of contact angle values, are 
crucial inputs for the simulation at this stage. During 
waterflood, water spontaneously fills the water-wet 
portion of the network through piston-like displacement 
and snap-off mechanisms. Smaller pores are filled first, 
followed by larger ones. The defending oil phase escapes 
through oil-filled pores. Finally, negative capillary 
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pressure is applied to initiate filling of the largest pore 
elements, allowing oil to escape through the outlet via the 
center of oil-filled pores or oil films. The simulation 
continues until all the oil is trapped within the network. 

 The simulator has been parallelized enabling the 
simulation on large networks comprising tens of millions 
within a few hours as described in [22].  

  Although we conducted a wettability anchoring 
experiment, there is still considerable uncertainty in the 
input parameters. To tackle this issue, we designed a 
statistical uncertainty workflow to integrate this 
information. In this workflow, we varied the uncertain 
parameters of the pore network simulation based on the 
ranges determined from the anchoring experiment.  

Table 2. Simulation parameters used to account for wettability 
interpretations of LT1 and LT3. 

 Value/ 
Range LT1 

Value/ 
Range LT3 

PD receding contact angle dis-
tribution 

Normal  
distribution  

Normal  
distribution  

PD receding contact angle 
standard deviation 

4°-8° 4°-8° 

Mean receding PD distribution 
20°-30° 

 
20°-30° 

 

WF dist1 (oil-wet) advancing 
contact angle distribution 

Normal  
distribution 

Normal  
distribution 

WF dist1 (oil-wet), advancing 
contact angle standard devia-

tion 

4°-8° 4°-8° 

Mean advancing WF dist1 (oil-
wet) contact angle 

100°-120° 
 

110°-120° 
 

WF dist 2 ( water-wet) advanc-
ing contact angle distribution 

Normal  
distribution 

Normal  
distribution 

WF dist2 ( water-wet), advanc-
ing contact angle standard devi-

ation 

5°- 10° 4°- 8° 

Mean advancing WF dist2 ( wa-
ter-wet) contact angle 

70°-89° 
 

70°-89° 
 

Fraction of distribution 2 (wa-
ter-wet fraction) 

0.5-0.65 0.2-0.5 

Spatial correlation length 4 - 20 4 - 6 

Wettability model 
Mixed-Wet  

Small 
Mixed-Wet  

Large 

Initial water saturation  0.15 0.2 

 Simulation parameters used to account for wettability 
interpretations of LT1 and LT3 are specified in Table 2. 
With these parameters, we generated thousands of input 
files for DynaPNM simulations using the WSP method 
[31].  Approximately 1500 realizations were created for 
each simulation study. These generated files were then 
used to run flow simulations on TotalEnergies' 
supercomputer. A selection process was performed to 
retain only those realizations that aligned with the 
observed ROS and Krw@ROS obtained from the 
wettability anchoring experiment. 

 Following the selection exercise, a simulation ranking 
procedure was implemented based on the oil production 
achieved after a specified amount of water injection 
corresponding to each relative permeability curve. This 
ranking process allowed us to define three scenarios: 

• P10: an optimistic scenario in which only 10% of the 
simulations produce more than this case 

• P50: a median scenario in which 50% of simulations 
produce more than this case 
• P90: a pessimistic scenario in which 90% of the 
simulations produce more than this case 

Generated DRP relative permeability curves were Corey 
fitted to facilitate their use in Reservoir simulations. 

3 Analysis of simulation results  

A summary of the simulations performed for this study 
are shown in the below simulation matrix: 

Table 3. Simulation matrix showing the combination of 
wettability inputs and pore networks used to perform five 

simulation studies 

 

 As LT1 and LT2 were found to be closer in terms of 
permeability and pore size distribution, it was selected as 
a first candidate for testing the same wettability 
assumption. Thus, MWS wettability derived from LT1 
experiment was used to perform simulations in LT2 
network. Then, the same MWS wettability was also used 
for LT3 network. However, due to the tighter permeability 
and smaller pore sizes seen in LT3, we evaluated its 
wettability separately. Simulations on LT3 were therefore 
repeated with MWL wettability derived from the LT3 
experiment, to assess possible impact of assumed vs. 
measured wettability in a scenario where wettability is 
correlated to pore size. Lastly, the MWL wettability was 
also tested on LT1 network. 

 Figures 7-9 show our simulated results after the 
selection exercise that keeps realizations in accordance 
with the observed end-points during the wettability 
experiments. The ranked P10 (green), P50 (orange), and 
P90 (red) curves are highlighted.  

 Simulation results for LT1 network using the MWS 
wettability derived from its wettability anchoring 
experiment are shown in Figure 7. The same MWS 
wettability assumption was used for LT2, and results 
compared with SCAL experiment available on a sister 
sample are shown in Figure 8. The SCAL experiment was 
performed on a large sister sample of LT2 core of 5 cm 



The 37th International Symposium of the Society of Core Analysts 

diameter and 20 cm length. This full -size core had a 
porosity of 20% with an absolute brine permeability of 
2198 mD. Swi of 0.148 was achieved via primary 
drainage with viscous oil. The same dead oil was used in 
the SCAL and DRP wettability experiment performed on 
LT1. However, due to plugging issues faced during the 
ageing of the plug, the coreflooding steps were completed 
with mineral oil Isopar that was able to reproduce the 
correct viscosity ratio. Imbibition process was run at 
multi-rate constant injection flowrates and 1D core 
analysis software called CYDAR® was used to perform 
history match on experimentally monitored parameters 
like pressure gradient, oil production vs. time data and 
saturation profiles obtained through 2D X-ray imaging. 
Numerically interpreted Kr curves were subsequently 
obtained by inverse analysis. To account for uncertainties 
in the inversion of experimental data, the SCAL data is 
represented by multiple realizations (where we considered 
uncertainty ranges for measured production data and 
pressure gradients. The same saturation profiles were used 
for the different realizations). Both the DRP simulated 
and SCAL Kr curves show Corey fitted results for 
comparison. 

We also analyzed the ratio of relative permeability 
between the simulations and experiments indicating a 
strong agreement between the simulated and experimental 
data We would like to highlight that in unsteady-state 
relative permeability measurements, the comparison only 
makes sense after breakthrough (achieved at water 
saturation of 55%) and before ROS (achieved at water 
saturation of 83%). In this range of saturations, 
comparison of DRP Kr water and oil curves with the given 
SCAL Kr is acceptable while the Kr ratios agreement is 
excellent. Respective recovery factors (using Buckley 
Leverett approach) are also shown at the end of this 
section as well as in Figure 8 (for LT2). 

 

Fig. 7. Selected (grey) and ranked relative permeability curves 
(at 1PV injected) for LT1 network using LT1 wettability. P10 
(Green) represents and optimistic scenario, P50 (orange) 
represents a median scenario and P90 (red) represents a 
pessimistic scenario. 
 

 
 
Fig. 8. Selected (grey) and ranked relative permeability curves 
(at 1PV injected) for LT2 network using LT1 wettability. SCAL 
Experiment Kr results of sample from type LT2 are compared. 
P10 (Green) represents and optimistic scenario, P50 (orange) 
represents a median scenario and P90 (red) represents a 
pessimistic scenario. Recovery factors for the three DRP ranked 
curves and the three SCAL realisations are compared. 

 

Fig. 9. Selected (grey) and ranked relative permeability curves 
(at 1PV injected) LT3 network using LT3 wettability. P10 
(Green) represents and optimistic scenario, P50 (orange) 
represents a median scenario and P90 (red) represents a 
pessimistic scenario. 
 
 The similar Kr ratios and RFs for DRP vs. SCAL 
curves in LT2 gives us more confidence in the predictive 
capabilities of DRP simulation when same wettability is 



The 37th International Symposium of the Society of Core Analysts 

assumed for similar topology, mineralogy, and fluids (as 
observed previously for FW system in [2]). But what 
about LT3, where permeability and pore size distribution 
are different? To assess this, we first present LT3 network 
simulations using its own wettability results in Figure 9.  

 Next, we look at the impact of measured vs. assumed 
wettability amongst LT1, LT2 and LT3. Figures 10-15 
show comparison of LT1 and LT3 network simulations, 
when their wettability models were interchanged. In these 
figures: 

For LT1 network: 
- Measured wettabillity = MWS & its relevant 

ranges obtained from LT1 experiment 
- Assumed wettability = MWL & its relevant 

ranges obtained from LT3 experiment 
For LT2 network: 

- Assumed wettability = MWS & its relevant 
ranges obtained from LT1 experiment 

For LT3 network: 
- Measured wettabillity = MWL & its relevant 

ranges obtained from LT3 experiment 
- Assumed wettability = MWS & its relevant 

ranges obtained from LT1 experiment 
 

 
Fig. 10: The ranked Kr curves of LT1 network using assumed 
and measured wettability. 
 

 
Fig. 11. Krw/Kro ratio and FF for LT1 sample using measured 
and assumed wettability 
 

 
Fig. 12: The three ranked Kr curves of LT2 DRP network using 
assumed wettability compared to Kr curves obtained from 
SCAL experiment on another LT2 sample. 
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Fig. 13. Krw/Kro ratio and FF for LT2 DRP sample and SCAL 
experiment compared. 
 

 
Fig. 14. The ranked Kr curves of LT3 network using assumed 
and measured wettability. 
 

 

Fig. 15. Krw/Kro ratio and FF for LT3 sample using measured 
and assumed wettability 

To evaluate the recovery factors (RF) associated with the 
simulated curves, we employed the Buckley Leverett 
approach. RF for LT1 and LT3 simulation cases are 
shown in Figure 16. Although we see visible changes in 
Kr curves shapes, Krw/Kro ratio and FF when wettability 
model is changed from MWL to MWS and vice-versa 
(Figures 10 - 15), for this particular case, the recovery 
factors are not significantly affected. In the bottom-most 
plot of Figure 16, we compiled the upper/lower RF 
bounds obtained for both measured/assumed wettability 
scenario in each case with the RF calculated for the SCAL 
experiment on LT2.  Difference in RF due to network 
topology change is more noticeable compared to 
difference due to wettability variation testing for this 
studied case . We should note that although these results 
are interesting and help us to extend our understanding to 
a case where wettability varies with pore radii, more tests 
are needed before validity of this approach can be 
generalized. Ideally, factors such as common mineralogy 
and fluids should also be varied to test the limits of this 
generalization. 

4 Conclusions  

In this study, we have furthered our investigation to see if 
we can potentially accelerate the DRP simulation 
workflow by reducing number of wettability anchoring 
experiments, where possible. Within an operational 
context, three rocks from the same well, but varying 
lithotypes (LT1, LT2 and LT3) were studied.  

 Wettability experiments were performed on both LT1 
and LT3 samples. One key interesting result of this study 
is the observation of two different mixed-wet wettability 
model types (MWS and MWL) for the two samples with 
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same mineralogy and fluids used during experiments. 
This shows that topology and pore sizes can have impact 
on wettability alteration.  

 

Fig. 16. Recovery Factors plotted against pore volume of water 
injected. (top) shows RFs computed for all ranked Kr curves 
contained from DRP simulations on LT1 network using both 
measured and assumed wettability. (middle) shows RFs 
computed for all ranked Kr curves contained from DRP 
simulations on LT3 network using both measured and assumed 
wettability.(bottom) RFs representing the upper and lower 
bounds for the simulated and experimental Kr  Corey fitted 
curves are shown.  
 
Wettability experiment results of LT1 were used as inputs 
to perform DRP Kr simulations on both LT1 and LT2 
rocks. LT2 Kr curves were validated by comparing with 
SCAL experiment results on the same rock type. After 
successful demonstration of LT1 wettability in LT2, the 
study was extended to a tighter rock LT3 (with smaller 
pore size distribution). In parallel, another independent 
wettability anchoring experiment was performed on LT3 
sample to assess the impact of assumed vs. measured 
wettability on simulation results. Kr simulations were 
performed on the LT3 pore network using its own 
wettability as well as that of LT1. Finally, simulations on 
LT1 network using LT3 wettability were also performed. 

 Results show that while Kr curve shapes and Kr ratios 
are visibly affected due to these variations, the recovery 
factors (RF) evaluated using Buckley Leverett approach 
were not significantly affected (for the given network 

topology). The wettability characterizations: MWS for 
LT1 and MWL for LT3, revealed two distinct and 
observable wettability models where wettability is 
correlated to pore size. This extends our previous study 
[2], where the wettability extrapolation approach was 
successfully applied to a fractionally wet reservoir 
sandstone. While these validations provide greater 
confidence, it is worth recalling that factors which are 
known to affect wettability alteration such as: mineralogy 
(primarily quartz), and reservoir fluids (same oil/brine 
composition) were same for these samples. Therefore, 
more tests are needed to have better understanding of the 
domain of validity of the same wettability assumption 
across different rocks in the same reservoir.  

 In the future, we could also think of benefitting from 
such simulation sensitivity analysis for cases where one 
wettability experiment has been performed and other 
samples from the same reservoir are in consideration for 
further DRP analysis. Given same mineralogy and fluids, 
we could then vary the wettability parameters for different 
networks across the reservoir and assess the impact on Krs 
and recovery factors. Such sensitivity studies could 
provide valuable recommendations on when a new 
wettability experiment is needed.  
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