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Abstract. Accurate fluid typing and quantitative saturation determination are essential to evaluate reservoir 
production potential, which is a well-accepted deliverable of NMR technology. However, challenges remain in 
obtaining these critical reservoir properties due to the ill-posed nature of conventional Inverse Laplace Transform 
(ILT)-based NMR data processing method and partitioning of overlapping continuous NMR relaxation time 
distributions from both 1D and 2D data. This work presents a solution for these problems since the inception of low-
field NMR in the O&G industry over 60 years ago. The first step in existing NMR data processing and interpretation 
is to convert raw time decay data by the ILT inversion with the known issue of overlapping peaks with similar 
relaxation times. Partitioning the overlapping peaks for fluid typing is usually performed using manual cut-off, 
Gaussian decomposition, or machine learning methods, with considerable uncertainty and inconsistency. The 
discrete inversion method generates a unique number of discrete components with the accurate quantity directly 
corresponding to the specific fluid type from the NMR raw data, time domain NMR signal decay curve. The 
proposed DI-NMR, a conventional ILT, and an improved ILT method are applied to 1D and 2D measurements on 
synthetic samples, bulk fluid mixture (brine and filtrate), and shale samples for comparison. For the synthetic 
samples of individual components, the DI-NMR method returned the components of accurate amplitudes and NMR 
relaxation times. In contrast, the ILT methods only provided estimated amplitudes and relaxation times through 
manual partitioning. The DI-NMR results from mixed bulk fluids also agreed very well with those from separate 
measurements. The true potential of the new workflow was illustrated in the analysis of shale samples, where 
different fluid types, such as free oil, free water, absorbed oil, and clay-bound water, were easily determined and 
quantified by directly assigning the discrete components based on their NMR relaxation time values according to a 
general fluid typing NMR scheme. The successful ongoing testing on the conventional T2 logging data of low 
signal-to-noise ratio indicates that it works well for logging as well. In summary, accurate and robust fluid typing 
and saturation determination could be achieved by using the DI-NMR method, which eliminates the uncertainty, 
ambiguity, and inconsistency of ILT-based two-step approaches. 

1 Introduction  

Nuclear magnetic resonance (NMR) is considered one of the 
important technologies to determine rock formations' 
petrophysical properties and probe the formation fluid types 
and saturation. Since its wide application in the 1990s, it has 
continuously developed and improved in all aspects to meet 
various needs. One recent example is its success in tackling 
unconventional reservoir characterization, where many other 
commonly used technologies developed for conventional 
reservoirs do not work well (1). Specifically, the fluid typing 
and quantification for shale can be achieved from the 2D 
NMR T1-T2 data through NMR data post-processing 
techniques such as manual cut-off, curve fitting, and machine 
learning methods (2, 3, 4).  
 

The current work proposes a new fluid typing and 
quantification approach based on a discrete inversion 
technique called the Anahess method (5, 6). For quantitative 
post-processing after inversion including fluid classification 
and quantification, it provides a more accurate and efficient 

workflow, skipping the partitioning of overlapping 
distributions by the ILT inversion method. In fact, the 
continuity of 2D distributions from different fluid 
components is partially imposed by the ILT methods itself. 
Unlike the ILT, the discrete inversion methods offer 
straightforward user-independent fluid typing and 
quantification. Anahess method is one of the inversion 
methods introduced for NMR data processing to obtain 
discrete or sparse distributions different from continuous 
distributions by the ILT methods. Reci et al. (7) obtained 
sparse distribution for increasing spectral resolution, while 
Yarman and Mitchell (8) recently obtained discrete solutions 
for downhole limited data bandwidths. The Anahess method 
first provided a robust alternative to the ILT methods (5) and 
subsequently combined with ILT (6) to generate both discrete 
and continuous solutions for quantitative and qualitative 
applications. These discrete and sparse inversion methods are 
expected to find more quantitative petrophysical applications 
in other NMR measurements for the right situations, just as 
the ILT methods. In this work, we present a set of results 
using the DI method to process T2, 2D T2-D, and 2D T1-T2 
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data. A brief review of existing shale fluid typing 
/quantification methods and NMR inversion methods, 
including both ILT and DI methods, is first presented to 
explain the background and motivation of the current 
development. 

1.1 Shale fluid typing and quantification from T1-T2 
maps by the ILT methods 

Accurate quantification of fluids in the shale poses a 
significant challenge because of the ~nm scale pore size, pore 
types, and complex fluid types such as free oil/water, 
hydroxyls, kerogen, etc. Nuclear magnetic resonance shows 
its unique strength due to its high sensitivity to protons in all 
types of fluids. It has gained wide applications in the O&G 
industry, including shale formation evaluation (9). 
Specifically, 2D T1-T2 has been applied successfully for 
fluid characterization in shale. Since the publication of Fleury 
et al. (2), a series of 2D NMR data interpretation schemes 
have been proposed for shale samples from different target 
regions and in various states. Mukhametdinova et al. (10) 
reviewed and summarized the eight most widespread data 
interpretation schemes and proposed a universal one with six 
essential regions or fluid types based on the best fitting of 
interpretation results to laboratory data. Each fluid is found to 
correspond to a specific area on the T1-T2 maps defined by 
approximate T1, T2, and T1/T2 ratios, from which its volume 
is determined from the total amplitude over the area.  
 

Even though all fluids presented in the sample can be 
detected by 2D T1-T2, simple regional cut-off methods do 
not appear to be efficient and accurate for accurate fluid 
typing and quantification. A series of sophisticated methods 
are developed to automatically perform fluid typing and 
quantification. One of them is based on the Gaussian 
decomposition, similar to the 1D T2 Gaussian decomposition 
(3,11). Some of the recent methods take advantage of data-
driven clustering techniques. Jiang et al. (12) compared the 
performance of six common clustering algorithms for 
characterizing fluids in the shale from 2D NMR data and 
claimed the Gaussian mixture model (GMM) performed the 
best. Venkataramanan et al. (4) developed a method utilizing 
an automated unsupervised learning algorithm called blind-
source separation (BSS) for quantifying the volumes of 
different fluid components from 2D T1-T2 well logging data. 
All of the above methods are based on 2D T1-T2 data 
processed by the ILT methods, which unavoidably contain 
additional constraints such as the regularization (smoothing) 
factor; however, their effect on the partitioning and accuracy 
was not studied in detail. 

1.2 Inversion methods 

NMR relaxation is modeled by a Fredholm integral equation 
of the first kind, and the ill-posed nature of the inversion 
problem means that an entire ensemble of infinite solutions 
exists. The ILT methods with Tikhonov regularization are the 
most commonly used methods of NMR data processing, 
while other methods are proposed (13, 14, 15). Mitchell et al. 
(16) reviewed the ILT methods and summarized three sets of 
general constraints on the resultant distributions: non-

negative, range/spacing of the distribution, and smoothness 
bias. The following sections discuss the regularization and 
spectral resolution of the ILT methods and review the sparse 
and discrete methods, which are explored for applications in 
shale fluid typing and quantification. 

1.2.1 Smoothness, spectral resolution, and uncertainty of the 
ILT methods 

The ILT methods successfully generate continuous and stable 
NMR relaxation time distributions with noise generated from 
the measurements. They are considered as the actual 
continuous pore size distributions and crude oil distributions, 
which are successfully applied for the NMR data 
interpretation. However, the degree of applied regularization 
factors, which are directly related to spectral resolution, and 
their effect on fluid typing and quantification should be 
evaluated. The regularization factor is determined by the 
trade-off of data fitting quality and model complexity. The 
spectral resolution of Tikhonov regularization is low, and 
features with relaxation time differences from each other by 
a factor of ~3 or less cannot be distinguished (7). The signal-
to-noise ratio (SNR) also plays a role in the smoothness of the 
continuous distributions. Song et al. (15,17) indicated that the 
resolutions of inverted 1D T2 distribution match the actual 
resolutions when SNR is above around 100 and higher. The 
actual spectral resolutions may not  be restored at lower SNR. 
The SNR of 2D T1-T2 data is relatively low compared to that 
of 1D, especially for well-logging data, mainly due to the 
longer data acquisition time requirement. Thus, the fine 
features sharper than the unknown smoothness imposed by 
ILT cannot be inverted fully. Furthermore, the smoothness 
appears to change with relaxation times. With the synthetic 
2D T1-T2 data examples presented in the later section (Fig. 
1), it is speculated that the final T1-T2 maps are the result of 
the data with different smoothness at different times, which 
is not fully considered in the ILT-based partitioning methods. 
There could be other uncertainties regarding the ILT 
methods, such as artifacts, which have not been fully studied 
in the literature. Some uncertainties of the ILT methods are 
only illustrated by comparison with other inversion methods 
(e.g., sparse and discrete) instead of complex numerical 
analysis of the ILT methods themselves, as shown in later 
examples (Fig. 1). 

1.2.2 Sparse and discrete inversion methods 

Some solutions in the entire ensemble of infinite solutions 
from the inversion problem could take completely different 
forms from the continuous solutions by the ILT methods. 
Prange and Song (18) used boxcar functions to investigate the 
T2 spectral uncertainty. In fact, solutions with different 
Smoothness can also be obtained from the ILT methods by 
adjusting the regularization factor. Just as the ILT methods, 
sparse and discrete methods also impose constraints on their 
solutions and are not claimed to be closer to the actual 
distributions. They are investigated for potentially more 
straightforward subsequent partitioning analysis for shale 
fluid typing and quantification.  
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Reci et al. (3) used the L1 form instead of the L2 form in 
regularization to obtain sparse distributions. Features with 
relaxation time differences of as little as 10% can be 
distinguished compared to a factor of 3 using L2 form 
regularization. Hexane and dodecane in bulk liquid mixtures 
and in porous media can be well separated. Similar to the 
potentially excessive broadening of L2 form regularization, 
in the opposite way, L1 regularization tends to break actual 
wide continuous peaks into a cluster of narrow peaks. 
Combinations of L1 and L2 norms are proposed by other 
researchers (19) to reduce constraints on the solutions. 
 

Ukkelberg and Sorland (5) developed the Anahess 
method using discrete components, and Yarman and Mitchell 
(8) developed a greedy variational method for discrete 
inversion utilizing a sum of Dirac functions. It is strikingly 
surprising that not too many components are needed for both 
methods to obtain a similar fit quality as other ILT methods. 
Four to nine components could usually be sufficient to fit the 
data well for rock samples by the Anahess method (5). On 
synthetic data sets, Yarman and Mitchell's method returns all 
or fewer components with more significant noise levels; on 
rock sample data sets, the components agree with the smooth 
peak maxima of distribution from the Tikhonov method, and 
their amplitudes are equal to the sum of the corresponding 
peaks. Both Anahess and greedy variational methods are 
considerably insensitive to noise. It is worth noting that fitting 
residual distribution might be another indicator of fitting 
quality in addition to levels of fitting residual. The fitting 
residual distribution should be Gaussian if the instrument is 
free of systematic errors. Both the Anahess and greedy 
variational methods have Gaussian-shaped fitting residuals, 
while the ILT methods may not (6, 8).  
 

The Anahess method was first developed as a pure 
discrete method and was later combined with ILT, providing 
continuous distributions reflecting the actual ones. With a 
known number of components, it is much simpler and more 
robust to interpret the 2D T1-T2 data for the further analysis 
of fluid typing and quantification, especially when the ILT 
method generates an overly continuous map without clear 
features. The known number of components determined by 
discrete inversion can also help the ILT methods produce data 
reflecting the actual system by grouping the discrete 
components and adjusting the broadening factor. The 
Anahess method provides a complete solution of both 
discrete components for subsequent quantification and 
continuous distributions for better understanding, while other 
sparse and discrete methods usually focus on discrete 
solutions only. The following section discusses the discrete 
method used in this report, Anahess, with more details. 

1.2.3 Anahess discrete inversion 

The Anahess method is designed to find a unique number of 
discrete exponential components according to the fitting stop 
criteria to fit the raw experimental relaxation data (5,6). It was 
named after the terms ("Analytical expression" and "Hessian 
matrix" (6)) in the procedure, which is used by the 
optimization algorithm. The function to be minimized from 
2D T1-T2 data takes a similar form to the ILT except for the 

missing regularization term and different arbitrary relaxation 
times from the logarithmically equal spaced times of the ILT:  

       𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹(𝑎𝑎0,𝑎𝑎,𝑇𝑇1,𝑇𝑇2) = ∑ ∑ �𝑓𝑓(𝑎𝑎0, 𝑎𝑎,𝑇𝑇1,𝑇𝑇2) − 𝑅𝑅𝑖𝑖,𝑗𝑗�
2𝑁𝑁𝑆𝑆𝑁𝑁

𝑗𝑗
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                 𝑎𝑎𝑝𝑝,𝑇𝑇1,𝑝𝑝,𝑇𝑇2,𝑝𝑝 ≥ 0,𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝 = 1 …𝑁𝑁𝑁𝑁𝑁𝑁                  (2) 
 

The component parameters, ap, T1,p, T2,p, are all larger 
than or equal to zero, Ri,j is the experimental measurement, 
and NSA and NSE are the numbers of rows and columns of 
the experimental data. NCO is the number of components. 
Further details of the solving algorithm (inverse Hessian 
matrix, univariate minimization, choice of the initial estimate, 
and the number of components) can be found in Ukkelberg et 
al. and Sørland et al.'s work (5, 6). In the current work, 
synthetic data sets are processed by this method again to 
compare with the ILT methods.  
 

The Anahess method has been further combined with 
the ILT to take advantage of both methods to produce 
Anahess/ILT continuous distributions without most of the 
constraints of common ILT methods (20). Extensive 
comparison of the results of sparse and discrete methods 
could be another interesting topic.  
 

2 Experimental samples and procedures 

The proposed Anahess-based DI-NMR method is robust and 
accurate compared to the ILT methods without the need for 
complex subsequent partitioning continuous 1D and 2D 
distributions for quantification. The new DI-NMR workflow 
has been tested on a set of NMR data and produced promising 
results for fluid typing and quantification. Two types of data, 
a synthetic and a bulk fluid mixture,  are presented to illustrate 
the differences between the methods, and a shale sample data 
is presented to demonstrate the new workflow.  
 

The details of the synthetic data set can be found in 
Althaus et al.'s paper (21). 10% noise is added to the synthetic 
signal. The volume, T1, and T2 of the peaks are listed in 
Table 1. The bulk fluid mixture is composed of 5 ml of high 
salinity formation brine and 5 ml of oil-based mud (OBM) 
filtrate in a 20 ml glass vial. Finally, the preserved shale 
sample has been used for the current study.  
 

The T2, T1-T2, and T2-D measurements of the bulk 
fluid mixture were conducted using a 2 MHz NMR 
instrument,  with an echo delay (TE) of 200µs. The signal-to-
noise ratios (SNR) of T2, T1-T2, and T2-D are 133, 85, and 
38, respectively. The T1-T2 data of the shale sample was 
acquired by a 12 MHz NMR instrument with TE = 55μs.  
 

The data are processed using two versions of ILT, called 
ILT1 and ILT2 here, and the proposed DI-NMR method. 
ILT1 is commonly used in the industry, and its regularization 
factor is automatically selected based on the SNR of the raw 
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data. ILT2 is an improved version of the ILT method with the 
regularization parameters computed by the automatic update 
rule (22). It is worth mentioning that the objective of this 
practice is not to rate different inversion methods but to 
explore the potential of the new DI-NMR method for accurate 
fluid typing and saturation determination.  

3 Results and discussion  

The results of data analysis for three groups of samples are 
reported below. Currently, the new workflow is demonstrated 
by simply applying a general fluid typing scheme of discrete 
components of laboratory core samples on the 3D bubble 
graph for identification and quantification.  

3.1 Synthetic sample 

The synthetic data set has three peaks with their volumes and 
relaxation times (T1 and T2) listed in Table 1 and Table 2 as 
input. The relaxation time of peak 1 is the shortest, peak 3 is 
the longest, while peak 2 is between peak 1 and peak 3. The 
peaks have similar relaxation times of typical shale samples.  

 

Table 1. Peak volumes calculated by different data processing 
techniques for the synthetic sample. 

Data 
Volume (ml) 

Peak 1 Peak 2 Peak 3 Total  

Input 1.9 1.4 2.9 6.2 

ILT-1 2.1 1.4 2.9 6.9 

ILT-2 2 1.5 2.8 6.6 

DI-NMR 1.9 1.4 2.9 6.2 

 

Table 2. Relaxation times of the synthetic sample from DI method. 

Components 
 

T1 (msec) T2 (msec) 

Input DI-
NMR Input DI-

NMR 

Peak 1 5 4.906 0.2 0.1968 

Peak 2 200 201.7 0.2 0.2003 

Peak 3 100 99.9 10 9.99 

3.1.1 T1-T2 distributions 

The 2D T1-T2 distributions generated by ILT1, ILT2, 
Anahess, and Anahess/ILT of the synthetic sample are 
presented in Figure 1. Unlike ILT, the Anahess method only 
produces the amplitude and relaxation times of discrete 
components. They are plotted using a 3D bubble graph to 
show the locations and relative amplitudes of the 
components, not the distributions. The differences in NMR 
peaks generated by four different methods are obvious. The 
additional spurious peaks and the broadening of the short 
relaxation peaks from both ILT methods are similar to other 
works on synthetic data reviewed in the previous section. The 
challenges are expected for subsequent partition methods on 
actual data with closer or overlapping peaks, even for the 
ILT2 method. On the contrary, the Anahess method returns 
almost exact volumes considering the added noise. The larger 
total integral volume of the ILT methods in Table 1 may 
indicate small distributions not covered by three peak areas, 
such as baseline, edge effect, etc. In addition, the relaxation 
times are returned accurately by the Anahess method (Table 
2), while they can be approximately calculated within the 
peak areas weighed by amplitudes for the ILT methods.  

 
Fig. 1. 2D T1-T2 distributions of the synthetic sample. 

3.2 The mixture of bulk fluids  

A suite of NMR data, T2, T1-T2, and T2-D, are also acquired 
for a fluid mixture with known distributions, 5ml of brine and 
5 mil of oil-based mud filtrates (OBMF).  

3.2.1 T2 distributions 

T2 distributions by the ILT1 method and Anahess/ILT 
method are plotted in Figure 2. The effect of varying 
regularization factors for ILT1 and broadening factors of 
Anahess/ILT is shown. As seen from ILT1 distributions, only 
when the regularization factor is considerably small do the 
two peaks start to be separated. These peaks, however, are 
well separated over the large range of broadening factors used 
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for the Anahess/ILT method. Thus, the Anahess/ILT method 
quantifies the amounts of different fluids directly without any 
curve fitting and guessing in most cases and generates 
continuous distributions. In case peaks overlap with the 
Anahess/ILT method, the discrete components of the peak 
can still be identified by the Anahess method. The T2 of the 
brine is 1.995 seconds By ILT1 (R=0.001) and 1.861 seconds 
by the Anahess method, while the peak T2 value of 10 ml of 
the same brine (not shown) is between 1.778 and 1.995 By 
ILT1 (R=1), indicating that simply adjusting the ILT 
regularization factor does not guarantee accurate single 
relaxation time if needed. Anahess method returns two 
discrete components corresponding to two major peaks by 
ILT1 and a much smaller component with T2 of 0.134 
seconds, which are labeled with dashed lines of the 
Anahess/ILT graph in Fig. 2. When varying the broadening 
factor, the OBMF indicates that it is not as homogenous as 
the single peak by the ILT method. The OBMF appears to be 
composed of both light and heavy components from the 
distribution at broadening-3 and broadening-4, revealing 
more details about chemical composition. Even though the 
ILT method is known to be the data processing technique 
suitable for data with continuous distributions, it could lose 
the details due to the poor spectral resolution. 

 

Fig. 2. The effect of varying regularization factors of ILT1 and 
broadening factors of Anahess/ILT. 

3.2.2 2D T1-T2 distributions 

The 2D T1-T2 distributions of the fluid mixture, brine, and 
OBMF generated by ILT1, Anahess, and Anahess/ILT 
method are given in Figure 3. Similar to 1D T2 distribution, 
the ILT method cannot differentiate the two fluids from the 
2D T1-T2 data. The T2 value of brine generated by the 
Anahess method is 1.97 seconds, slightly larger than the one 
from T2. Three main components, marked with 1,2, and 3, 
are obtained by Anahess from the 2D T1-T2 measurement, 
which is the same as the 1D T2 measurement. The total 

volume percentage of the other peaks, marked with 4,5,6,7,8, 
is only 3.11%, which is negligible. Peak 4, with its T1 much 
less than 0.0001 seconds, and 7, with its T2 much larger than 
10 seconds, are out of the plot ranges. These extremely small 
peaks, peaks 4, 5, 6, 7, and 8, are generated due to lower SNR 
and can also be ignored. The Anahess/ILT method produced 
a T1-T2 map with a clear separation between different fluid 
types and accurate volume without any adjustment, unlike 
data by the ILT methods. 

 
Fig. 3. 2D T1-T2 distributions of the fluid mixture. 

3.2.3 2D T2-D distribution 

2D T2-D measurement is another common NMR 
measurement with many qualitative and quantitative 
applications. The 2D T2-D distributions processed by ILT1, 
Anahess, and Anhess/ILT are given in Figure 4. The fluids 
cannot be differentiated from the ILT map; the same three 
components are obtained by the Anahess method, and the 
map by Anahess/ILT clearly shows how the T1 and diffusion 
coefficients of filtrate vary, which may provide more accurate 
T2-D-based quantitative analysis such as surface relaxivity 
(23).  
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Fig. 4. T2-D distributions of the fluid mixture. 

3.3 Shale sample 

The new NMR shale Fluid Discretization Method (NFDM) 
workflow has, for the first time, been applied to shale 
samples, with the results compared and verified with both 
other NMR and conventional methods. The strength of DI-
based NFDM is evident for the samples with severely 
overlapping NMR data on 2D T1-T2 maps. The results of the 
2D T1-T2 data processed by ILT and Anahess methods for 
the shale sample are shown in Figure 5. 

 

Fig. 5. T1-T2 distributions of the shale sample. 

3.3.1 2D T1-T2 distributions 

The 2D T1-T2 distributions (ILT1, ILT2, Anahess with fluid 
type scheme, and Anahess/ILT) of the shale sample are 
presented in Figure 5. The 3D bubble graph (Anahess with 

fluid type scheme of Figure 5) has a general 2D T1-T2 fluid 
typing scheme added for demonstration of NFDM workflow, 
which should be tuned to the specific unconventional 
reservoir. Unlike fluid typing based on the 2D map by the ILT 
methods with user-determined manual cut-off values, curve 
fitting, or machine learning methods, the NFDM workflow 
simply assigns discrete components to fluid types based on 
their relaxation times for the specific formation. The result of 
discrete fluid type assignment and the volumes by NFDM is 
shown in Table 3. The existing methods of manual cut-off and 
machine learning may still work on this example, however, 
with low efficiency, large uncertainty, and low spectral 
resolution. With discrete component signatures by the DI-
NMR method, the assigning and grouping of components is 
direct and robust. On the contrary, applying the regular or 
irregular boundaries by either manual cut-off or machine 
learning methods to the data with continuous distribution of 
various fluid types does not guarantee consistent data 
interpretation. 

Table 3. Fluid volumes of the shale sample. 

Fluid type 
Oil-

Bitumen/
Heavy oil 

Oil-
Absorbed 

Oil-
free 

water-
structural 

and 
absorbed 

water-
free 

Other-
noise 

Discrete 
component 

number 
13 12 

7,8,
10,1

1 
3 

 
 

2,4,5,6 

 
1,9 

Volume 
(ml) 

0.273 0.138 0.77
7 0.107 

 
0.245 

 
0.073 

4 Conclusion 

The review of the various NMR data inversion methods 
reveals that they inherently impose constraints on the results, 
making it essential to apply them in suitable application 
cases. For the purpose of fluid typing and saturation 
determination, the proposed NMR data processing method, 
DI-NMR, provides a new potential workflow that is robust 
and accurate. We successfully demonstrated the application 
of the proposed shale fluid typing method (NFDM), DI-NMR 
workflow based on the Anahess method, for accurate fluid 
typing and saturation determination substantiated by the 
preliminary results of different samples. Besides fluid typing 
from 2D T1-T2 data, new applications may be developed by 
combining the continuous distributions from the ILT methods 
and discrete components from DI methods. More applications 
in reservoir assessment and well producibility evaluation 
using the proposed method will be continuously tested. Other 
quantitative applications of using the discrete inversion 
method alone and the inversion methods combining both 
discrete and continuous features are also under investigation. 
Finally, the developed technologies, DI-NMR for data 
processing and NFDM for fluid typing and quantifications, 
are currently being tested with logging data for both 
conventional and unconventional reservoirs. 
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