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Abstract. NMR relaxometry is an important technique to characterize the structure of porous media. Data analysts 
very often overlook the surface roughness effect on NMR T2 relaxation and thereby underestimate the pore size 
distribution. To characterize the surface roughness, we developed an image-based 3D pore surface roughness 
characterization method by decomposing the connected pore structure into segmented pores with moderate geometry 
and simple connectivity. Although the surface roughness effect on NMR T2 relaxation has been modeled 
numerically using the random walk simulation at individual pores, it unambiguously becomes computationally 
costly with the size of digital rocks increasing, given that the surface relaxation in segmented pore structures must 
be corrected individually with a unique factor to correct the local surface roughness. To tackle this issue, in this 
study the surface roughness upscaling problem is transformed to a clustering problem and solved by the evolutionary 
clustering algorithm. Numerical results show that the proposed data-driven upscaling method yields surface 
roughness coefficients at the core level that can be used to effectively control the accelerated surface relaxation 
during the random walk simulation with simple preprocessing.  

1. Introduction  

NMR relaxometry is an important technique to characterize 
the structure of porous media [1], as T2 relaxation times are 
indicative of pore structure if the surface relaxation resides in 
the fast diffusion limit [2]. When estimating pore sizes from 
NMR T2 relaxation time, the conventional approach assumes 
idealized pore shapes with smooth surfaces, and surface 
relaxivity is viewed as an adjustable parameter to match up 
with some reference measurements, Furthermore, this 
analytical model neglects the influence of irregular pore 
shapes and surface roughness on NMR T2 relaxation, often 
resulting in underestimated pore sizes [3-6]. To accurately 
characterize pore structures using NMR relaxometry, it is 
imperative to consider these geometric effects, necessitating 
practical techniques for characterizing pore shape 
irregularities and surface roughness in 3D space. 

Despite of this, surface roughness is usually measured in 
the laboratory using sophisticated microscopy techniques like 
atomic force microscopy and laser scanner confocal 
microscopy [3, 4]. These instruments measure surface 
roughness along a cross-sectional plane of the rock sample, 
generating precise measurements once the pore-shape/pore-
size influence is filtered out. Nonetheless, these approaches 
are confined to 2D planar areas and are incapable of 
characterizing 3D surface roughness. It is desirable to have a 
technologically feasible approach to characterize the surface 
roughness in 3D space. Micro-computed tomography (μ-CT) 
is a 3D imaging technique to digitalize rock samples into 
greyscale images that have been extensively used to study 
petrophyscial properties of formation rocks. Although the 
finite resolution of μ-CT imaging cannot resolve the actual 

surface roughness considering the multiscale nature of 
surface roughness, an image-based 3D surface roughness 
characterization method was developed to characterize the 
“visible” roughness originating from the surface textures at 
the given resolution [7]. This technology is not limited to the 
μ-CT imaging; it can produce precise measurement as the 
resolution of imaging technique increases. 

The image-based 3D surface roughness characterization 
technique includes three main steps. The first step is to 
decompose the connected pore space into disconnected pore 
bodies, as the pore structure is too complex to be handled by 
any shape descriptor. Thus, the subnetwork of over-
segmented watershed (SNOW) algorithm is applied to 
segment pores with effective control of over-segmenting 
issue [8]. Then a skeleton breakup algorithm is utilized to 
adaptively simplify the pore structures if necessary. In the 
second step, the surface of segmented pore structure will be 
reproduced by the spherical harmonic (SH) functions, 
yielding a set of SH coefficients [9, 10]. To characterize the 
surface roughness, it is necessary to define the reference 
surface that retain the overall shape but excludes the surface 
textures as much as possible. A subset of SH coefficients is 
used to build the reference surface such that the enclosed 
volume of the reference surface has the same volume of the 
original pore geometry and meanwhile preserves a close pore 
morphology. The surface roughness is then calculated by 
making full use of the surrounding vertex information. 

The above pore surface roughness characterization 
method could measure surface roughness of pores partitioned 
from a digital rock. The effect of surface roughness on NMR 
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T2 relaxation is numerically modeled at the pore level using 
the random walk simulation [11-13]. When extending to 
digital rocks, we have to apply a unique correction as a 
function of surface roughness at each individual pore to 
effectively control the surface relaxation in digital rocks. This 
significantly increases the computational complexity. Thus, 
in this study we developed a data-driven upscaling scheme by 
transforming the original upscaling problem to a clustering 
problem. Four different clustering algorithms are 
investigated, including k-means clustering [14], DBSCAN 
clustering [15], local gravitation clustering [16], and 
evolutionary clustering [17]. The clustering results are 
benchmarked to the result obtained by physical partitioning 
in terms of pore size analysis. The upscaled surface roughness 
coefficient is then computed from the centroid of each cluster, 
which will be used to calculate the roughness correction 
factor. Numerical examples demonstrate that, with some 
simple modifications, the upscaled surface roughness 
coefficients can be used to effectively control the surface 
relaxation. The pore size distribution estimated from the 
corrected NMR T2 relaxation time could accurately represent 
the pore structure, which are agree with the results obtained 
from pore network modeling. 

The structure of this paper is organized as follows. In 
Section 2, detailed procedures are presented to characterize 
the 3D surface roughness of pores partitioned from a 
segmented rock image. Then, to expedite surface roughness 
upscaling, the original problem is transformed to a clustering 
problem. Four clustering algorithms are investigated in this 
study, including k-means clustering, density-based spatial 
clustering of applications with noise (DBSCAN), local 
gravity clustering, and evolutionary clustering. The upscaled 
surface roughness coefficients are then to correct surface 
relaxation during the random walk simulation. Concluding 
remarks are made at the end, c.  

2. 3D pore surface roughness characterization 

The irregular pore shape and complex pore connectivity raise 
enormous challenges in describing the morphology of the 
pore space using a single mathematical model. To develop an 
image-based surface roughness characterization technique, it 
is necessary to simplify the pore structure of a segmented rock 
image to objects that are readily modeled. Therefore, the key 
to the success of the technique used in this study is to partition 
the connected pore space into a plurality of disconnected pore 
bodies with moderately complex geometry and simple 
connectivity. Once ready, the surface of the segmented pore 
geometry is modeled by the spherical harmonic (SH) 
functions, which are used to build a reference surface from 
which the surface roughness is defined and parameterized. 
We will detail each step in the following of this section. 

2.1. Pore separation and diagnosis 

As highlighted before, the pore space is too complicated to be 
modeled by a single shape descriptor; thereby it is of vital 

 
1 The rock samples are downloaded from https://www.imperial.ac.uk/earth-
science/research/research-groups/pore-scale-modelling/micro-ct-images-
and-networks. 

importance to apply a proper pore segmentation algorithm, 
which serves as the cornerstone of subsequent steps [7]. The 
class of watershed segmentation methods has been 
extensively used to segment either solid grains or pores for 
the analysis of grain morphology or the investigation of pore 
connectivity [8, 18, 19]. In general, watershed segmentation 
methods compute a distance map where each object of 
interest has the largest distance that are viewed as the “peak” 
within a finite region. The peaks are then utilized as markers, 
regardless of their magnitudes, to determine the “catchment 
basins” of the binarized rock image, leading to an over-
segmentation of the pore space. To reduce the misidentified 
peaks, Gostick proposed the subnetwork of the over-
segmented watershed (SNOW) algorithm [8]. The SNOW 
algorithm progressively reduces the number of local peaks by 
smoothing the image with a Gaussian blur filter, removing 
peaks on the saddle points and ridges, and merging peaks that 
are sufficiently close in the distance map. Figure 1 illustrates 
the over-segmentation issue when using a typical watershed 
segmentation method. In contrast, pore size distributions 
generated by the SNOW algorithm is consistent with the 
results of pore network modeling.  

 
Fig. 1. Comparison of pore size distributions extracted by a typical 
watershed segmentation, SNOW, and pore network modeling for (a) 
sandstone (b) carbonate 1.  
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Figure 2 shows the pore structures partitioned from the 
Berea sandstone as shown in Figure 1(a). We randomly color 
the pores for illustration purposes only. It is worth noting that 
the original tiny pore throats may become twig-shaped 
corners on the surface of segmented pores. These sharp 
textures increase the failure of the proposed surface 
roughness characterization method. To increase the 
robustness and reliability, the generated pore surface is first 
slightly eroded, then followed by a dilation operation, to 
remove such surface textures. Although many of the 
generated pore bodies can be easily handled using SH, some 
of them may still retain complex geometry. To continue 
simplifying these pore structures, the skeleton breakup 
algorithm is developed to cut off the skeleton of the voxelized 
pore structure in a hierarchical manner. Figure 3 shows the 
skeleton of a segmented pore by the image thinning operation 
until the medial axis of the resultant structure remains a unit 
voxel length. The bridging nodes (shown in red), which are 
comprised of one to multiple voxels, connect the links 
between them that constitute the skeleton backbone. The 
skeleton breakup algorithm first calculates the connectivity of 
bridging nodes along the backbone. Depending on the pore 
size and complexity, it either removes the most “busy” node 
that connects the highest number of links, or the longest link 
on the backbone connecting to it. Then the remaining 
structure will be used as makers to perform the watershed 
segmentation, which ideally divides the object of interest into 
two constituents with lower complexity. This process 
continues until the generated pore geometries are considered 
simple enough that cannot be split. In addition, to avoid over-
segmentation, the skeleton breakup is terminated if the 
number of pore voxels is smaller than 5000. 

 

 
Fig. 2. Illustration of disconnected pore bodies partitioned from the 
Berea sandstone using the SNOW algorithm. The corresponding 
pore size distribution is shown in Figure 1(a). 

 
Fig. 3. Skeletonization of a disconnected pore geometry. The red 
voxels represent the bridging nodes, while the blue voxels represent 
the links that constitute the skeleton, with the endpoint node marked 
by black circle.  

2.2. Pore surface reconstruction  

Once the pore space is well split, each voxelized pore 
structure is replaced by a triangular surface mesh. This 
preprocessing would remarkably improve the accuracy, 
efficiency, and robustness of the surface reconstruction step. 
Furthermore, we build a bijective mapping between mesh 
vertices on the pore surface ( ), , Tx y z  and mesh vertices on 

the parameter surface ( ), Tθ ϕ′ ′  of a unit sphere, whereθ ′ and

ϕ′ range from [ ]0,π and [ ]0, 2π  respectively. The initial 
parameterization often produces a low-quality mesh, 
reducing the accuracy and efficiency of surface 
reconstruction. To improve the parameter mesh quality, the 
Control of Area and Length Distortion (CALD) algorithm, 
proposed by Shen and Makedon [9], is applied in this study.  

With a proper spherical parameterization as shown in 
Figure 4, the pore surface can be modeled as follows 
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whereθ ′ andϕ′ are the polar coordinates of vertices on the 
parameter surface. The real form of the SH function 
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nY θ ϕ′ ′  is given by 

 ( ) ( )( )
( ) ( ) ( )2 1 !

, cos cos , 0
4 !

m m
n n

n n m
Y P m m

n m
θ ϕ θ ϕ

π
+ −

′ ′ ′ ′= ≥
+

 (4) 

 ( ) ( )( )
( ) ( ) ( )2 1 !

, cos sin , m<0
4 !

mm
n n

n n m
Y P m

n m
θ ϕ θ ϕ

π
+ −

′ ′ ′ ′=
+

 (5) 

with the associate Legendre function m

nP  being 

Endpoint Nodes

Bridging Nodes



The 37th International Symposium of the Society of Core Analysts 

 ( ) ( ) ( )2 21
1 1 1 .

2 !

m n
nmm

n m n n

d d
P x x

dx n dx
= − − −

 
  

 (6) 

In the above formulations, n  is the index of the SH degree, 
and N  is the maximum degree of spherical harmonics. From 
Figure 5, as N increases, more detailed surface textures can 

be reproduced. The SH coefficients m

x nc , m

y nc , and m

z nc  are 
solved by the standard least squares algorithm, given that the 
number of equations is often greater than the number of SH 
coefficients. In this study, the maximum degree of spherical 
harmonics is set to 40. 

 
Fig. 4. Bijective mapping between the pore surface and the 
parameter surface of a unit sphere using spherical parameterization. 

 
Fig. 5. Pore surface reconstruction as a function of the maximum 
degree of spherical harmonics. The original voxelized pore structure 
is shown as the reference. 

2.3. Surface roughness parameterization 

Characterization of surface roughness often relies on the 
definition of the reference curve/plane. It is observed from 
Figure 5 that reducing the total degree of spherical harmonics 
gradually excludes surface textures from the reconstructed 
surface. The reference surface is supposed to keep the overall 
shape but discard local surface textures as much as possible. 
To determine the optimal N for building the reference 
surface, the geometry enclosed by the reference surface is 
required to have the same volume, as well as similar 
elongation and flatness. Numerical experiments show that 

6=N yields satisfactory results. Figure 6 shows a voxelized 
pore structure on the left and the corresponding pore surface 
reproduced with 40=N on the right. The pore surface is 
shown in green color with grey lines, while the reference 

surface is shown in white color with blue lines), which retains 
the overall pore shape but excludes many surface textures.  

 
Fig. 6. Comparison of (a) voxelized pore structure and (b) the 
reconstructed pore surface and the reference surface.  

To parameterize the surface roughness, we first define 
some necessary parameters, see Figure 7. In the figure, the 
pore surface is colored in yellow while the reference surface 
is represented by the white triangulations with black lines. 
The ith vertex of the reference surface has m surrounding 
vertices that delineate a region (marked in red) of finite area 
ˆia . We denote by ih the height measured from the reference 

surface to the pore surface along the vertex normal direction. 
If 0>ih , it indicates the pore surface extrudes from the 
reference surface; instead, the pore surface intrudes into the 
reference surface with 0<ih . The distance between the 

vertex i and vertex j  is denoted by ∆ jx ( 1, ,= j m ). 

Then the local roughness at vertex i  is defined as  

 

11

1 1= =

 − 
 = =    ∆   

∏ ∏
mmm m

j iij
i

j jij j

h hdh
r

dx x
 (7) 

Eq. (7) is the geometric mean of the ratio of the local 
height difference to the distance between a pair of the pivot 
and surrounding vertices, which make full use of regional 
information for surface roughness characterization. With 
iterating all valid vertices on the reference surface, the 
(overall) surface roughness is defined by 
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where kλ is the surface roughness coefficient. A is the sum of 
the areas of valid surface triangulations that constitute the 
reference surface. The subscript k denotes the kth pore bodies 
partitioned from the porous space of the rock. 

(b)
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Fig. 7. Schematic diagram of surface roughness parameterization. 
The pore surface is colored in yellow and the reference surface is 
represented by white triangulations with black lines. The definitions 
of ˆia , ih , ih , and ∆ jx are described in the context. 

3. Upscaling roughness from pore to core scale 

Now the surface roughness of segmented pores can be 
characterized using the method described in Section 2. With 
hundreds of pores partitioned from a digital rock, a lot of 
surface roughness coefficients are computed. Naturally, 
upscaling of pore surface roughness can be transformed to a 
clustering problem, shown as Figure 8. The upscaled surface 
roughness coefficient is calculated by the centroids of the 
clusters. We use this value to represent the surface roughness 
coefficient of the pores in the same cluster, which is then used 
to correct the NMR T2 relaxation computed from random 
walk simulations in digital rock. 

 
Fig. 8. Schematic diagram of upscaling surface roughness from pore 
to core scale. The centroid of each cluster yields an upscaled surface 
roughness coefficient. 

In the following, the Berea sandstone, shown in Figure 2, 
is used to validate the data-driven upscaling method. Four 
clustering algorithms are investigated, including k-means 
clustering, DBSCAN clustering, local gravitation clustering, 
and evolutionary clustering. To evaluate their performances, 
the results of the four clustering algorithms are benchmarked 
to the result generated by partitioning the clustered data in 
terms of the pore size distribution (see Figure 9 (a)). The grey 
dash line divides the pore size distribution into categories, 
yielding two clusters as shown in Figure 9 (b). In addition, at 
each pore size, different surface roughness coefficients are 
calculated with roughly equal bandwidth. This is in line with 

our expectation that the surface roughness is influenced by 
the morphology of grain surfaces due to the sedimentation 
and diagenesis process. On the other hand, a weak 
relationship is observed between the surface roughness 
coefficient and equivalent pore radius. The equivalent radius 
is defined as the radius of the spherical pore that honors the 
same volume as a partitioned pore structure. It intuitively 
makes sense for the image-based surface roughness 
characterization method. Under a finite imaging resolution, 
the pore structure comprised of more void voxels is prone to 
exhibit more complex surface morphology. It has to be noted 
that the 3D pore surface roughness characterization method 
captures the “surface roughness” (surface textures) at a finite 
length scale. Even though it is not the actual roughness given 
the multiscale nature of surface roughness, the above 
observations do not contradict each other. 
 

 
Fig. 9. (a) pore size distribution of the Berea sandstone and (b) 
partitioning of pore surface roughness coefficients into two clusters.  

It is desirable to automatically partition data into different 
clusters instead of analyzing the distribution of pore sizes or 
morphology parameters. The selection of the threshold value 
is subjective and biased, and also highly depends on the 
experience of data analysts. To tackle this issue, k-means 
clustering, DBSCAN clustering, local gravity clustering, and 
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evolutionary clustering are tested for surface roughness 
upscaling. In particular, k-means clustering, as well as its 
variants, partitions data into k  clusters in which data points 
belonging to the same cluster share the nearest mean. This 
class of methods typically demands prior knowledge of the 
available number of clusters (e.g. the number of pore types in 
our case), making it less appealing for practical applications. 
Another method under investigation is the DBSCAN 
(Density-Based Spatial Clustering of Applications with 
Noise), which classifies observations into core points, border 
points, and outliers. Generally, it partitions data in terms of 
the density of regional data. The distinct advantage of 
density-based clustering algorithms over k-means clustering 
is it doesn’t need any prior knowledge. A special density-
based clustering algorithm, called local gravitation clustering, 
is applied as well, which treats each data point as an object 
with mass and associates with the local resultant force 
generated by its neighbors.  This method leverages the 
difference of the local resultant force of the data points, 
depending on their locations (either at cluster center or cluster 
border), to accomplish cluster separation. However, this 
method requires the number of neighbors as input, and an 
inappropriate estimate could result into an unsatisfactory 
result. The last method used in our study is evolutionary 
clustering in which the clustering problem is reformulated as 
an optimization problem and solved by the differential 
evolution algorithm. The surface roughness coefficients are 
partitioned into different clusters by minimizing the sum of 
the distance between a data point and the centroid of the 
cluster it belongs to. Table 1 shows all the required inputs for 
the four clustering algorithms. 
Table 1. Input parameters of four clustering algorithms for surface 
roughness upscaling. 

Algorithm Inputs value 
k-means clustering number of clusters 2 
DBSCAN clustering neighborhood scan 

radius 
0.35 

minimum number 
of neighbors 

3 

Local gravitation clustering number of 
neighbors 

40 

Evolutionary clustering number of 
iterations 

200 

Population size 50 
Crossover 
probability 

0.2 

 
Figure 10 shows the results of the aforementioned four 

clustering algorithms. It is observed that the DBSCAN 
method, see Figure 10(b), over-partitions the surface 
roughness coefficients; all the other methods correctly predict 
the number of clusters, albeit the number of clusters is 
specified as input for k-means clustering. The accuracy of the 
other three clustering methods is very close, and evolutionary 
clustering works slightly better. Although evolutionary 
clustering has to set three input parameters, these parameters 
are very typical; instead, the k-means clustering, DBSCAN 
clustering and local gravitation clustering require some prior 
knowledge to specify the inputs, which are prone to be case-
dependent. Given this, evolutionary clustering provides an 

automatic approach to upscale surface roughness from pore 
scale to core scale. 

 
Fig. 10. Partitioning of pore surface roughness coefficients using (a) 
k-means clustering, (b) DBSCAN clustering, (c) local gravitation 
clustering, and (d) evolutionary clustering. 

The representative surface roughness coefficients 
calculated from the centroids of the cluster 1 and 2 in Figure 
10 (d) are 0.3694 and 0.4536. The presence of surface 
roughness increases the surface-volume ratio and thereby 
accelerates the surface relaxation. Without accounting for the 
surface roughness effect, data analysts would underestimate 
pore sizes ( R ) by using the analytical equation shown below 
[1] 

 23=R ρT  (9) 

where ρ is the surface relaxivity [um/s] and 2T is the 
transverse relaxation time [s]. The NMR T2 relaxation can be 
modeled by the random walk simulation [11-13], which 
mimics the Brownian motion of nuclear spins (abstracted as 
particles) in the porous media. The physical process of 
nuclear magnetization decay due to surface relaxation is 
simulated by multiplying the nuclear magnetization m with 
a factor of ( )1− p  whenever a particle collides with solid 
grains such that 

 ( ) ( ) ( )1+ ∆ = × −m t t m t p  (10) 

where 
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2
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In Eq. (11), ds is the diffusion distance travelled at a time 
step [um] and 0D is the bulk diffusion coefficient [um2/s]. 

To correct the surface roughness effect, we define the 
roughness correction factor ( α ), as the inverse of the 
exponential of the upscaled surface roughness coefficient. 
The roughness correction factor is then assigned to the solid 
voxels surrounding the pores. If a particle collides with a solid 
voxel, it will bounce back and obtain the local roughness 
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correction factor, reducing p by multiplying 1≤α . Now 
the Eq. (11) becomes 

 
0

2
3

= ×
ρdsp α
D

 (12) 

If the surface roughness coefficient is zero, indicating a 
smooth surface without roughness, the roughness correction 
factor is equal to one such that Eq. (12) returns back to Eq. 
(11). Figure 11 shows the pore size distributions interpreted 
from Eq. (9). The blue solid line does not account for the 
surface roughness effect, while the red solid line is obtained 
with each separated pore having its own roughness correction 
factor. The black dash line is computed based on the upscaled 
roughness coefficients. The numerical experiment 
demonstrates that ignoring the surface roughness effect 
would underestimate the pore size distribution. In addition, 
the roughness correction factors, estimated from the upscaled 
surface roughness coefficients, work well, and the computed 
results consistent with the result obtained from pore network 
modeling.  

 
Fig. 11. Pore size distribution of the Berea sandstone interpreted 
from NMR T2 relaxation time. The green solid line with circles is 
the result obtained from pore network modeling. 

4. Conclusion 

In this study, we developed a data-driven pore surface 
roughness upscaling method and solved the upscaling 
problem with the evolutionary clustering algorithm. Surface 
roughness data are generated by an image-based pore surface 
roughness characterization technique, including pore 
separation, surface reconstruction, and roughness 
parameterization. The key to the success of 3D surface 
roughness characterization relies on decomposing the 
connected pore space into pores with low to medium 
morphological complexity and connectivity. Then, we 
leverage spherical harmonics to reproduce pore surfaces and 
build the reference surface from which the surface roughness 
is characterized and parameterized. By comparing four 
clustering algorithms, evolutionary clustering provides an 
automatic approach to partition surface roughness 
coefficients with good accuracy. The upscaled surface 
roughness coefficients are calculated by evaluating the 

centroids of existing clusters. We introduce the roughness 
correction factor as a function of the surface roughness 
coefficient to correct the surface roughness effect in random 
walk simulations. The corrected NMR T2 curves could 
properly estimate the pore size distribution, consistent with 
the result from pore network modeling. Future works include 
extending the proposed method to carbonates and developing 
a simple and universal formulation to estimate roughness 
correction factor for both sandstones and carbonates. 
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