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Abstract. CO2 migration is affected by rock heterogeneity but is not reflected in the relative permeability (𝑘𝑟(𝑆𝑤)) 

and capillary pressure (𝑃𝑐(𝑆𝑤)) saturation functions measured by special core analysis (SCAL). We present a first 

step to an upscaling workflow that combines state-of-the-art SCAL interpretations with continuum-scale 

experiments on the next larger scale where heterogeneities dictate CO2-brine displacement. By numerical 

interpretation using 1D homogeneous and 3D heterogeneous simulation domains, we show that an effectively 

upscaled 𝑘𝑟(𝑆𝑤) is substantially out of the uncertainty range of classical SCAL measurements used for 𝑘𝑟(𝑆𝑤) 

quantification. Alternatively, by including porosity, permeability and capillary heterogeneity, the SCAL-derived 

relative permeability is well applied. However, this effectively corresponds to downscaling and is therefore of little 

value for reservoir simulations. Our results demonstrate the following: (a) simple USS experiments can be used to 

investigate the influence of capillary heterogeneity on 𝑘𝑟(𝑆𝑤), and (b) a rigorous upscaling procedure including 

rock heterogeneity on various scales is needed to use standard workflows such as special core analysis for CCS 

developments in carbonates. 

1 Introduction  

Accurate prediction of fluid flow and two-phase 

displacements in subsurface reservoirs is essential for a range 

of applications, including hydrocarbon extraction and 

geological CO2 storage. However, the unexpected migration 

of carbon dioxide in CO2 injection operations highlights the 

need to improve our understanding of the underlying 

mechanisms, particularly in heterogeneous reservoirs [1–4]. 

Rock formations are typically heterogeneous on various 

scales. This poses a major challenge for the design and 

interpretation of measurements of multiphase flow properties, 

as the definition of a representative elementary volume 

(REV) depends not only on the scales of heterogeneity versus 

the sample size but also on the nature of the measured 

property [5–8]. The dependency of capillary forces on 

heterogeneity results in a local variation in saturation states 

during immiscible displacements, referred to as 'capillary 

heterogeneity'. Conceptionally, this effect can be described 

through the spatial variability of the capillary-pressure 

saturation function [9]. This phenomenon has practical 

consequences, as the measurement of multiphase flow 

parameters may depend on the measurement scale [10–12]. 

For example, rock heterogeneity at the submeter scale, such 

as laminations and bedding, can significantly impact fluid 

flow properties and must be considered to successfully model 

and predict fluid flow at larger scales [12–14]. The effect can 

be particularly strong in multiscale heterogeneous carbonates 

and when significant viscosity contrasts are observed (e.g., 

CO2-brine displacements). 

Conventional reservoir simulation workflows naturally 

cannot explicitly represent the impact of small-scale 

heterogeneity on multiphase flow properties, such as relative 

permeability and capillary pressure characteristics [15–17]. 

Relative permeability is a key parameter that controls the 

displacement and sweep efficiency in immiscible 

displacement. The main challenge in characterizing relative 

permeability is that laboratory and special core analysis 

(SCAL) measurements are usually performed on 

homogeneous samples that do not accurately represent the 

average property at the size of the discretization of a reservoir 

model. To illustrate this point, we can compare the size of a 

SCAL plug, which is on the order of centimeters, to a typical 

grid block in a reservoir simulation, which may be orders of 

magnitude larger. The information we have from the 

subsurface is scarce, and the understanding of the upscaling 

workflow from the homogeneous rock‒fluid properties 

(SCAL) to the heterogeneous next scale is limited. Therefore, 

different approaches have been developed to characterize 

capillary heterogeneity within rock cores [14, 18–26], but 

uncertainty remains in characterizing more complex rocks 

typical of subsurface reservoirs across the fractional flow 

curve and for different flow rates [27, 28]. 

Multiscale workflow from the micron (pore) scale to the 

meter scale, offer new opportunities to systematically upscale 

multiphase flow for reservoir application purposes [29]. 

These workflows combine laboratory-based characterization 

techniques, such as core flooding with in situ imaging 

methods on various scales and digital rock physics, with 

upscaling schemes that account for capillary pressure 

heterogeneity. With rigorous upscaling, small-scale effects 

can be incorporated into continuum-scale models when 

interpreted by numerical modeling using an optimization 

routine; effective petrophysical parameters and relative 

permeability saturation functions can be calculated, including 

their uncertainties [7, 19, 29–32]. However, implementing 
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sample heterogeneity for interpretation of relative 

permeability refers to a downscaling rather than an upscaling 

as long as the heterogeneity is not represented in a grid block 

of a reservoir model. 

A well-studied candidate rock sample with a high degree of 

heterogeneity is Estaillades limestone. Studies have shown 

that relative permeability saturation functions derived from 

classical SCAL experiments do not adequately represent the 

behavior of larger rock volumes that are 12 times the volume 

of the samples typically used in SCAL studies, particularly 

when these volumes encompass 3-inch diameter cores 

[33][30]. 

In a prior study [30], we developed a comprehensive 

stochastic SCAL analysis workflow and applied it to steady-

state and centrifuge experimental data on decane-brine 

primary drainage in Estaillades. The analysis yielded 

confidence intervals of combined measurements and sample-

to-sample variations [30]. 

 

In the present study, building upon our previous work [30], 

we perform two key investigations depicted in Fig 1: 

 

1- We conduct a comparative analysis between full 

stochastic interpretations of SCAL data (steady state 

and centrifuge) and larger-scale unsteady state 

(USS) core flood experiments using 1D 

homogeneous simulation domains. By presuming 

homogeneity, the analysis of the USS experiment 

yields the upscaled 𝑘𝑟(𝑆𝑤), inclusive of the 

confidence interval. 

 

2- We incorporate the 3D porosity profile as 

determined by X-ray computed tomography (CT) 

and the resulting permeability and capillary 

heterogeneity. By history matching the USS 

experiment on the 3D heterogeneous domain, we 

aim to determine the true 𝑘𝑟(𝑆𝑤) and shed light on 

the impact of heterogeneity on the investigated 

scale. 

 

 

Fig 1. Workflow of the study. This diagram illustrates the 

progressive approach taken in this research, starting from the 

homogeneous analysis through to the 3D heterogeneous simulation. 

It depicts the distinct steps and methodologies employed at each 

stage, underlining the complex interplay between experimental 

work, numerical interpretation, and the investigation of 

heterogeneity effects on relative permeability saturation functions. 

 

These investigations are intended to delineate the influence of 

rock heterogeneity on relative permeability measures and 

capillary pressure, thereby improving our understanding and 

predictive capability of CO2-brine displacement in 

heterogeneous carbonate rocks.  

To study the effect of heterogeneity on relative permeability, 

we analyze decane-brine and CO2-brine unsteady-state 

experiments. The first serves as a water-wet reference case 

that directly refers to the earlier steady-state measurements, 

and the second is the system under investigation. 

Heterogeneity is introduced step by step by first considering 

a 1D homogeneous simulation domain, then a 1D 

heterogeneous domain, and finally the actual 3D 

heterogeneous domain. For 1D homogeneous cases, a full 

stochastic analysis is feasible and thus, carried out. For the 

1D heterogeneous domain, simple history matching is 

performed to derive the base case 𝑘𝑟(𝑆𝑤), which is also used 

for the 3D simulations, considering the full set of 

experimental saturation data. By progressively increasing the 

complexity of the fluid pairs and simulation domains, we 

ensure that the approach is robust and applicable to a wide 

range of scenarios. This methodology will provide valuable 

insights into the validity and limitations of the current SCAL 

procedures and pave the way for the development of 

alternative methods and upscaling workflows for calculating 

saturation functions. 

2 Experimental and Numerical Methods 

The work was performed using experimental results 

published by [33]. The experiments were performed on 

Estaillades (EST) limestone samples with a length of 15 cm 

and a diameter of 7.5 cm. The average rock porosity and 

permeability were experimentally derived to 𝜙 = 0.297 and 

𝐾 = 260 mD, respectively. 

The experiments were performed at elevated pressure and 

temperature conditions of 100 bar and 50°C, referring to 

approximately 1000 m reservoir depth at which the injected 

CO2 is in the supercritical state (sc). To investigate the 

primary displacement process of brine by CO2, the sample 

was first saturated to 𝑆𝑤 = 1 and then flooded with scCO2. A 

reference measurement was performed with decane as the 

injection phase; the decane-brine experiments serve as a 

reference and can directly be compared to the earlier SCAL 

interpretation since SCAL measurements were performed 

with the same pair of fluids and on rock samples from the 

same block of the Estaillades outcrop. The flooding 

experiments were conducted under unsteady-state (USS) 

conditions, employing distinct constant injection rates for 

decane and CO2. Specifically, a liquid injection rate of 0.25 

ml/min was used for both decane and CO2 at the pump. 

However, due to the unique characteristics of CO2, where it 

changes from liquid form to supercritical state after injection, 

a volume correction is applied. As a result, the effective 

injection rate for CO2 is calculated to be 0.44 ml/min. This 

difference in effective rates considers the transformation of 

CO2 from its liquid form to its supercritical state. This 

process allows a fair comparison and interpretation of the 

displacement processes between the reference decane-brine 

and the CO2-brine system. During the experiments, the 

pressure drop was measured, and the upfront 3D porosity 

SCAL 
Interpretation

• Calculated Kr & Pc curves under the 
assumption of homogeneity

1D Interpretation 
of Larger-scale 
Core Flooding 
Experiments

• 12x SCAL sample volume

• Forward simulation using Kr & Pc from SCAL

• Interpretation by stochastic history matching

3D Verification 
of Larger-scale 
Core Flooding 
Experiments

• Apply Procedure to 
CO2-brine 
Displacement
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profiles and 3D saturation profiles were taken by difference 

imaging via in situ medical CT scanning. Production curves 

were derived from CT saturation monitoring. The 3D 

saturation profiles are shown in Fig. 2 for the decane-brine 

displacement (top row) and the CO2-brine displacement 

(bottom row) with the invading fluid in orange and the initial 

rock-fluid system as a semitransparent background. Further 

experimental details can be found in [33]. 

The simulation methodology developed in this study uses the 

MATLAB Reservoir Simulation Toolbox (MRST) to 

simulate immiscible displacement of fluids in reservoirs, 

operating under the assumption of incompressible flow. This 

process effectively employs Darcy's law for momentum 

balance and material balance equations to describe the fluid 

flow through porous media. Upon completion of the 

simulation, we turn to 'history matching'. This is a process of 

adjusting the simulation parameters until the simulated results 

closely mirror the observed experimental data. For this 

optimization problem, we employ MATLAB's global 

optimization module, which makes use of genetic or active-

set algorithms for a constrained nonlinear optimization.  After 

achieving the best match, we further utilize the Markov Chain 

Monte Carlo (MCMC) method, specifically the Delayed-

Rejection Adaptive-Metropolis (DRAM) algorithm, to 

examine the response surface around the optimal solution and 

determine its sensitivity. The DRAM approach is fully 

automated and enhances the efficiency of the MCMC 

sampler, which is especially valuable when dealing with 

high-dimensional problems inherent in the saturation 

functions' high number of parameters. This combination of 

numerical techniques and simulation methods provides a 

robust solution for history matching and uncertainty analysis. 

The methodology is discussed in [30] and is applied to 

unsteady state experiments in the present study. The 

introduction of rock heterogeneity is discussed in a separate 

chapter below.

 
 
Fig. 2. CT time sequences of the decane–brine (top) and CO2–brine (bottom) experiments. The decane and CO2 saturation distributions are 

illustrated in orange, and the initial rock-fluid system is displayed as a semitransparent background. Note that the threshold setting for the 

saturation is comparable but arbitrary to highlight heterogeneity in the saturation distribution. 

 

3 Interpretation Assuming Homogeneity 

A key assumption in classical SCAL interpretation is that the 

samples are considered homogeneous, resulting in a simple 

1D homogenous simulation domain. This assumption 

requires careful sample selection and reasonably small 

samples with a volume that can be considered a representative 

elementary volume (REV). The data once interpreted are 

therefore single sets of relative permeability and capillary 

pressure saturation functions that do not need further 

interpretation. In reservoir simulations, such 𝑘𝑟(𝑆𝑤) and 

𝑃𝑐(𝑆𝑤) saturation functions are typically assigned to rock 

types with heterogeneity being accounted for by a Laverett-J 

scaling of the 𝑃𝑐(𝑆𝑤) [34]. In any case, in a single grid block, 

only one 𝑘𝑟(𝑆𝑤) and 𝑃𝑐(𝑆𝑤) saturation function is assigned, 

implicitly considering the grid block as homogeneous. 

Compared to small-scale SCAL experiments, larger-scale 

core flooding is typically affected by the size and 

heterogeneity of the sample, and sweep effects are observed 

[14, 33]. Now, there are two options for numerically 

interpreting the data: (a) introducing rock heterogeneity of 

various properties into the simulation model, resulting in 

“true” saturation functions, and (b) ignoring rock 

heterogeneity, i.e., considering the rock domain as 

homogeneous and representative. In the latter scenario, where 

rock heterogeneity is ignored, we do not anticipate obtaining 

the same relative permeability. Instead, we expect to derive 

an effective 𝑘𝑟(𝑆𝑤) that accurately represents the 

investigated volume, a value we consider the upscaled 

𝑘𝑟(𝑆𝑤). This upscaled value, however, might still be 

influenced by the scale of the investigation. 

[30]In our initial step, we use a 1D-homogenous SCAL 

approach to extract the relative permeability from the larger-

scale USS experiments. To achieve this, we first simulate the 

displacement process, utilizing the 'true' SCAL saturation 

functions applicable to the same rock type, as per [30]. 

Subsequently, we perform a history match of the 

experimental data to determine 𝑘𝑟(𝑆𝑤), using 𝑃𝑐(𝑆𝑤) derived 

from MICP, data that is usually available for standard core 

analysis. To apply the MICP curve to primary drainage, we 

perform a scaling operation based on the interfacial tension 

(IFT) as follows: 

 

𝑃𝑐(𝜎) =
𝜎

𝜎𝑟𝑒𝑓 
 𝑝𝑐,𝑟𝑒𝑓 , (1) 

where 𝜎𝑟𝑒𝑓  is the mercury-air IFT (480 mN/m) and 𝜎 is the 

IFT of the decane- and CO2-brine systems, which is assigned 

45 mN/m and 40 mN/m [35], respectively. Furthermore, we 

apply the closure correction to MICP based on the 

methodology presented by [36]. The pressure drop and the 

production data were then matched by varying 𝑘𝑟(𝑆𝑤). The 

MICP-scaled 𝑃𝑐(𝑆𝑤) for decane-brine, in comparison with 

the data derived from SCAL measurements, is examined in 

[30]. This is depicted in Fig. 4 (c) and (f) for both decane-

brine and CO2-brine systems. Except for the entry pressure, 

the scaled MICP curve falls well within the uncertainty range 

of the SCAL data. 
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The SCAL interpreted 𝑘𝑟(𝑆𝑤) and 𝑃𝑐(𝑆𝑤) from [30] can now 

be directly compared to the decane-brine USS flooding 

experiments since both refer to the same rock-fluid system. 

There is a large deviation between the predicted and observed 

results; the pressure drop and the brine production curve are 

strongly underestimated, as indicated in Fig. 3 (a) and (b) – 

the SCAL data are not directly applicable to the investigated 

scale. 

A good match can be achieved by history matching the 

experimental data. For this, 𝑘𝑟(𝑆𝑤) is parametrized using the 

two commonly used representations, namely, Corey [37] and 

LET [38]. Since the experimental process is primary 

drainage, the residual decane saturation and the respective 

endpoints were fixed to 𝑆𝑤 = 1 and 𝑘𝑟𝑤(𝑆𝑤 = 1) = 1 using 

Corey, and all other parameters of 𝑘𝑟(𝑆𝑤) were open for 

matching. The matched experimental pressure drop, 

production curve and saturation profiles are shown in the top 

row of Fig. 3. Even if the saturation profiles simulated on a 

homogeneous domain cannot reflect the experimental 

profiles, Δ𝑃 and the cumulative brine production are matched 

well with some deviations in the transient part and 

specifically at the breakthrough point. 

The LET parametrization is used as a second attempt to match 

the experimental measurements using a 1D homogeneous 

model, which offers greater flexibility at the expense of more 

fitting parameters. For uncertainty analysis, we used MCMC 

simulations, the same methodology as applied to the SCAL 

experiments in [30]. Note that in the present case, 𝑃𝐶(𝑆𝑤) is 

kept constant to the scaled MICP mentioned before. 

The history match results and the quantified uncertainty 

ranges are shown in Fig. 4, along with the best match from the 

SCAL interpretation in Fig. 4 (a) and (b). The LET matches 

the experimental data perfectly. In comparison to the SCAL 

reference data, however, Corey 𝑘𝑟(𝑆𝑤) generally shows a 

lower mobility of both phases, while LET shows a crossover 

with higher mobilities at high phase saturations and lower 

mobility at lower phase saturations. In any case, the 

differences between SCAL and the larger scale homogeneous 

interpretations are not subtle but substantially out of the given 

confidence interval of the SCAL data [30] and the USS data 

given for the LET parametrization. The saturation profiles 

show a poor match as expected; specifically, a homogenous 

simulation domain cannot represent a heterogeneous rock 

sample, but the brine production curve's overall material 

balance is met. 

 

 
Fig. 3. Comparative Analysis of Experimental and Numerical Interpretations of Decane-Brine and CO2-Brine Displacement Tests in 

Homogeneous Domains. This figure presents the comparison between experimental outcomes (depicted by symbols) and their corresponding 

numerical interpretations for both decane-brine (upper row) and CO2-brine (lower row) displacement tests. From left to right, the panels show: 

(a) the pressure differential, (b) the brine production curve over time, and (c) the decane and CO2 saturation profiles at two distinct time 

intervals as indicated in the legend. The solid lines in each graph represent the 1D numerical history-matching outcomes using homogeneous 

and heterogeneous simulation domains based on the CT density profile (represented by the light blue line). The models used for the relative 

permeability calculations and their respective uncertainty intervals are highlighted in the legend and elaborated upon in the main text. Consistent 

coloring and symbols are utilized across all figures to enhance comprehension. For example, the blue line labelled 'Corey best match' in figure 

(e) retains the same meaning in all related figures. 
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Fig. 4. Comparative Analysis of Relative Permeability and Capillary Pressure Saturation Functions in Decane-Brine and CO2-Brine 

Displacement Experiments in Homogeneous Domains. This figure shows the results of history matching performed on 1D homogenous and 

1D heterogeneous simulation domains, utilizing capillary pressure functions (shown on the right) as input. The top panels (a) to (c) represent 

the history matching (HM) results for the decane-brine experiments, while the lower panels (d) to (f) showcase the results from the CO2-brine 

displacement experiments. From left to right, each panel depicts: relative permeability 𝑘𝑟 presented in both linear and logarithmic scales, and 

capillary pressure 𝑃𝑐  on a logarithmic scale. The squares in each panel correspond to SCAL results, which are measured on a smaller, 

homogenous scale. Consistent symbols and colors are used throughout the figure to ensure ease of understanding and coherence. 

 

The same procedure was applied to the CO2-brine 

displacement experiment, as shown in the lower row in Fig. 2 

and Fig. 3. Additionally, here, we applied a homogeneous 1D 

simulation domain and Corey and LET parametrization of the 

relative permeability to be matched. The MICP curve was 

scaled in the same way with an IFT of 40 mN/m and a contact 

angle of 140 as representative of the CO2-Brine fluid pair 

[34]. 

By history matching, good matches similar to the decane-

brine case could be achieved with the advantage of the LET 

model. The data are shown in Fig. 3 (d) and (e). The MCMC 

confidence interval (P10 to P90) covers the experimental data 

points well. The respective saturation profiles for two 

subsequent time steps are shown in Fig. 3 (f). Again, the 

complexity of the experimental saturation profile cannot be 

matched, but the material balance is honored. 

The resulting 𝑘𝑟(𝑆𝑤) values are shown in Fig. 4 (d) and (e). 

Compared to the decane-brine system, the relative CO2-brine 

permeability shows a significant difference in water mobility, 

which is initially smaller but decreases significantly less with 

increasing CO2 saturation than in the reference system. 

Furthermore, compared to the reference case, the uncertainty 

from the MCMC analysis (P10 to P90) is significantly lower 

for the brine relative permeability but higher for the CO2 

phase. 

From these observations, we conclude that (a) HM complex 

experimental data with a 1D homogeneous simulation 

domain allow a perfect description of the experimental Δ𝑃 

and the brine production curve using a flexible 𝑘𝑟(𝑆𝑤) 

parametrization. (b) The simulated saturation profiles 𝑆𝑤(𝑥) 

do not match the complex experimental profiles but match the 

material balance as a result of the assumed homogeneity. (c) 

By assuming homogeneity, 𝑘𝑟(𝑆𝑤) represents the average 

sample volume and may therefore be considered upscaled. 

4 Introducing Heterogeneity 

To model the heterogeneous saturation profiles, as presented 

in Fig. 3 (c) and (f), the methodology presented by [7] is used. 

The authors characterize core heterogeneity by scaling the 

capillary pressure in the grid block. In the methodology 

implemented here, the 1D simulation domain is divided into 

2-mm-size slices, which captures the sample heterogeneity 

with considerable detail. Each grid (𝑗) is assigned a distinct 

value for capillary pressure 𝑃𝑐
𝑗
(𝑆), porosity 𝜙𝑗, and absolute 

permeability 𝐾𝑗. Small-scale variations in fluid saturation by 

capillary heterogeneity can be quantified through variations 

in capillary entry pressure for each grid element in the system 

[7]. In Brooks-Corey parametrization [37], this entry pressure 

is denoted as 𝑃𝑑; therefore, we have: 

𝑃𝑐
𝑗(𝑆) =

1

𝑓𝑗

𝑃𝑐(𝑆) =
𝑃𝑑𝑗

𝑃𝑑

𝑃𝑐(𝑆)     𝑗 = 1, … , 𝑁, (2) 

where 𝑓𝑗 is the scaling factor, 𝑁 is the number of elements in 

the system and 𝑃𝑑𝑗  is the entry pressure for the jth element. 

𝑃𝑐(𝑆) is the reference capillary pressure curve, which is 

measured experimentally by MICP or by history matching 

SCAL experiments. To consider heterogeneity, we use 

Brooks-Corey parametrization for the reference capillary 

pressure, and we history match its parameters to calculate the 

system’s capillary pressure. To calculate the spatial variations 

in porosity and absolute permeability, we use the Leverett-J 

function, 𝐽(𝑆), which states: 

𝐽(𝑆) =  √𝐾
𝜙⁄

𝑃𝑐(𝑆)

𝛾
 (3) 
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Analogous to the formulation for capillary scaling, we can 

write: 

𝑓𝑗 =
𝑃𝑑

𝑃𝑑𝑗

= √
𝐾𝑗/𝜙𝑗

𝐾m/𝜙m

 (4) 

where 𝐾𝑗 and 𝜙𝑗 are the absolute permeability and porosity 

for each grid element and 𝐾𝑚 and 𝜙𝑚 are the experimentally 

measured average porosity and permeability of the core, 

respectively. For heterogeneous modeling, the steady-state 

saturation profile can be calculated using the equation below: 

d𝑆

d𝑥D

= (
𝑞𝜇nw𝐼

𝐴𝐾𝑗

) (
1

𝑘r,nw(𝑆)
) (

𝑓𝑗

d𝑃c(𝑆)/d𝑆
), (5) 

in which we solve for the jth element of the system. This 

equation is similar to the one that we solve for homogeneous 

modeling, except 𝑓𝑗 is multiplied by the last term of the 

equation. In the simulator developed for this purpose (based 

on MRST), a saturation number is assigned to each grid 

element, and the capillary pressure of each element is divided 

by the corresponding scaling factor 𝑓𝑗. To calculate the 

scaling factors, we minimize the following objective 

function: 

𝐸(𝑥𝑗) = ∑  

𝑁q

𝑘=1

(
𝑃c (𝑆exp(𝑥𝑗)) − 𝑓𝑗𝑃c (𝑆H(𝑥𝑗))

𝑃c (𝑆exp(𝑥𝑗))
)

2

, 𝑗 = 1, … , 𝑁, (6) 

 

where 𝑃c is the reference capillary pressure curve, 𝑓𝑗 is the 

scaling factor, 𝑆exp(𝑥𝑗) is the slice average water saturation 

measured during the experiment, and 𝑆H(𝑥𝑗) is the saturation 

profile calculated with homogeneous simulations. This 

approach is justified since the capillary pressure profile is 

almost unaffected by small-scale heterogeneities [7]. 

Having calculated the scaling factors using equation (6), we 

then calculate 𝐾ℎ𝑚 using equation (4) and the porosity profile 

shown in Fig. 3 (c). Therefore, for heterogeneous modeling, 

each grid cell has three distinct properties, namely, porosity 

𝜙, absolute permeability 𝐾 (calculated from equation (4)), 

and capillary scaling factor 𝑓 (calculated using equation (6)) 

The numerical responses of the pressure difference Δ𝑃, brine 

production 𝑄, and saturation profiles 𝑆(𝑥) are then history 

matched to the experimental measurements using a 

multiobjective error function that is minimized using the 

genitive algorithm from the MATLAB optimization toolbox: 

𝐼 =
1

𝑁
∑  

𝑁

𝑗=1

(
∆𝑃sim(𝑥𝑗) − ∆𝑃exp(𝑥𝑗)

∆𝑃exp(𝑥𝑗)
)

2

 

𝐽 =  
1

𝑁
∑  

𝑁

𝑗=1

(
𝑄sim(𝑥𝑗) − 𝑄exp(𝑥𝑗)

𝑄exp(𝑥𝑗)
)

2

 

𝐾 =  
1

𝑁
∑  

𝑁

𝑗=1

(
𝑆sim(𝑥𝑗) − 𝑆exp(𝑥𝑗)

𝑆exp(𝑥𝑗)
)

2

. 

 

(7) 

In the methodology presented by [7], the capillary pressure 

scales are calculated from steady-state drainage experiments, 

in which the saturation profiles at the end of each fractional 

flow were evaluated. The novelty of the methodology 

presented here is the analysis of single-rate drainage 

experiments. For this purpose, the scaling factors are 

calculated from one saturation profile at the transient state 

and one at the steady state, i.e., late in the injection period. 

 

 
Fig. 5. Comparative Analysis of Experimental and Numerical Results in Decane-Brine and CO2-Brine Displacement Experiments Considering 

Heterogeneity. The top and bottom rows represent the experimental responses (indicated by symbols) for decane-brine and CO2-brine 

displacement experiments, respectively, and their corresponding numerical interpretation similar to Fig. 3. From left to right, each panel 

depicts: the pressure difference and brine production curves over time, and saturation profiles for decane and CO2 at two subsequent time steps 

as specified in the legend. The lines in each panel represent the results from the numerical history-matching process utilizing a 1D 

heterogeneous domain derived from the CT density profile and the full 3D heterogeneous volume. The employed relative permeability models 

are indicated in the legend and discussed in detail in the main text. This figure demonstrates the integration of heterogeneity in modeling the 

displacement experiments. 
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Fig. 6. Comparative Visualization of Relative Permeability and Capillary Pressure Saturation Functions in Heterogeneous Domains. This figure 

showcases the outcomes of history matching processes applied on the 1D and 3D heterogeneous simulation domains, derived from decane-

brine and CO2-brine displacement experiments. The top row panels (a) to (c) exhibit the history-matching results for the decane-brine 

experiments, whereas the bottom row panels (d) to (f) represent the outcomes for the CO2-brine displacement experiments. Each set of panels, 

from left to right, display: relative permeability 𝑘𝑟 on both linear and logarithmic scales, and capillary pressure 𝑃𝑐 on a logarithmic scale. The 

squares in each graph correspond to the SCAL results that were obtained from measurements on a smaller scale deemed as homogeneous. This 

figure aids in contrasting and understanding the impact of heterogeneity on relative permeability and capillary pressure functions. 

 

5 Interpretation Considering the 1D Porosity 

Profile  

With the above discussed model, we implement porosity, 

permeability and capillary heterogeneity in the 1D simulation 

domain. The match of a forward simulation using the SCAL 

interpreted 𝑘𝑟(𝑆𝑤) and 𝑃𝑐(𝑆𝑤) [30] is shown in Fig. 3 (a) and 

(b). It shows that, even when the simulations are performed 

on the heterogeneous modeling domain, the 𝑘𝑟(𝑆𝑤) and 

𝑃𝑐(𝑆𝑤) interpretation from SCAL lead to large deviations in 

∆𝑃, the brine production is underestimated and the saturation 

profiles cannot be matched. 

The match of the experimental responses for decane-brine 

(top row) and CO2-brine (bottom row) are shown in Fig. 5. By 

including the exact porosity profile, more experimental data 

have to be described with only a few additional parameters, 

such as the scaling factor. This is at the expense of the quality 

of the agreement of the numerical interpretation with the 

experimental data, as shown in Fig. 5. The saturation profiles 

and the brine production curve are now satisfactorily 

described. However, the pressure difference ∆𝑃 shows that 

the transient part around the breakthrough time cannot be 

described exactly, which is also visible in the agreement with 

the other experimental responses. 

The resulting Corey and LET 𝑘𝑟(𝑆𝑤) and Brooks-Corey 

𝑃𝑐(𝑆𝑤) are shown together with the SCAL interpretations in 

Fig. 6; including the heterogeneity in the simulations causes 

the resulting 𝑘𝑟(𝑆𝑤) to come ultimately close to the 

uncertainty range predicted from the SCAL interpretation by 

[30]. The predicted brine 𝑘𝑟(𝑆𝑤) for both fluid pairs is just at 

the lower boundary of the uncertainty range, but the decane 

𝑘𝑟(𝑆𝑤) is well inside the uncertainty interval. The largest 

deviation shows the calculated CO2 𝑘𝑟, which is substantially 

lower than the SCAL predictions. However, the SCAL 

experiments refer to the decane-brine system rather than to 

CO2-brine and may be caused by different wetting properties. 

The good agreement of the simulation and experiment 

demonstrates the following: (a) the methodology developed 

by [7] is applicable to a single-rate USS drainage experiment, 

and (b) including the heterogeneity results in 𝑘𝑟(𝑆𝑤) 

saturation functions that come close to the formerly called 

“true” 𝑘𝑟(𝑆𝑤), as obtained from classical SCAL experiments. 

However, as the comparison with the homogeneous 

simulations shows, this “true” 𝑘𝑟(𝑆𝑤) is just meaningful if 

the heterogeneity is explicitly described. 

The calculations of the scaling factors and Pareto fronts from 

the optimization method used show a linear trend between the 

error from production and the error from the saturation 

profile. This addresses the inconsistency observed in the 

homogeneous simulations and confirms the need for 

heterogeneous simulations for the EST core plug. 

6 3D Heterogeneous Modeling 

 6.1 Converting medical-CT data to 3D saturation maps 

The 3D porosity and saturation maps were calculated from 

medical CT scans. The underlying grayscale images are given 

in absolute Hounsfield units (HU). The images were 

processed by median and Gaussian-Blur-3D filtering to 

reduce noise within the gathered scans and to enhance the 

contrast between the fluid phases. 

The 3D porosity map was derived from difference imaging, 

i.e., taking the difference between the brine-saturated scan 

and the dry scan, as suggested by [39–41]. The 3D porosity 

profile was obtained by using a voxel-by-voxel approach: 



The 36th International Symposium of the Society of Core Analysts 

𝜙(�⃗�) =
𝐻𝑈𝑏𝑟𝑖𝑛𝑒

𝑠𝑎𝑡 (�⃗�) − 𝐻𝑈𝑑𝑟𝑦(�⃗�)

𝐻𝑈𝑏𝑟𝑖𝑛𝑒 − 𝐻𝑈𝑎𝑖𝑟

= 𝛼 ∙ (𝐻𝑈𝑏𝑟𝑖𝑛𝑒
𝑠𝑎𝑡 (�⃗�) − 𝐻𝑈𝑑𝑟𝑦(�⃗�)), 

(8) 

where 𝐻𝑈𝑏𝑟𝑖𝑛𝑒
𝑠𝑎𝑡 (�⃗�) refers to the scan of the fully brine-

saturated sample, 𝐻𝑈𝑑𝑟𝑦(�⃗�) to the dry scan, and 𝐻𝑈𝑏𝑟𝑖𝑛𝑒 and 

𝐻𝑈𝑎𝑖𝑟  correspond to the 𝐻𝑈 values of brine and air. To 

achieve the best calibration, the difference scan is scaled by 

the factor 𝛼 to match the standardly measured porosity of the 

plug. 

Consequently, the 3D fluid distributions were calculated as a 

function of space and time from the dynamic CT profiles, 

𝐻𝑈𝑒𝑥𝑝(�⃗�, 𝑡) by equation (9): 

𝑆𝐶𝑂2
(�⃗�, 𝑡) =

𝐻𝑈𝑏𝑟𝑖𝑛𝑒
𝑠𝑎𝑡 (�⃗�, 𝑡0) − 𝐻𝑈𝑒𝑥𝑝(�⃗�, 𝑡)

𝐻𝑈𝑏𝑟𝑖𝑛𝑒
𝑠𝑎𝑡 (�⃗�) − 𝐻𝑈𝐶𝑂2

𝑠𝑎𝑡 (�⃗�)
, (9) 

where 𝐻𝑈𝑏𝑟𝑖𝑛𝑒
𝑠𝑎𝑡 (�⃗�, 𝑡0) and 𝐻𝑈𝑒𝑥𝑝(�⃗�, 𝑡) correspond to the 

initial scan at 𝑆𝑤 = 1 and the current experimental time step, 

respectively, and 𝐻𝑈𝐶𝑂2
𝑠𝑎𝑡 (�⃗�) is the scan of the fully CO2-

saturated sample. The two calibration scans in the 

denominator were conducted prior to the flooding 

experiment. The experimental and simulated 3D saturation 

profiles are shown in Fig. 7 (a) to (f). 

The original resolution of the CT images is 0.18×0.18×0.5 

mm3. For computational efficiency, we binned 24×24×8 

voxels, which means that each grid block measures 

approximately 4 mm cubed. To analyze the sensitivity of the 

simulation results to the choice of binning, simulations were 

performed with a lower binning of 12×12×4 for the decane-

brine case. Since the effect of downscaling on the results was 

found to be minimal and since the simulation time increases 

exponentially with the number of grid blocks, a binning of 

24×24×8 was used for the majority of the simulations. 

 

6.2 3D Heterogeneous Modeling 

The methodology of capillary pressure scaling can be 

extended from 1D to 3D simulation domains [29]; the 

principle of calculating the scaling factor is the same as that 

for 1D but is calculated on the 3D grid. Because of the 

computational demand, it is not possible to history match the 

experimental data in 3D since each simulation usually takes 

around four hours. Instead, we forward simulate the 

displacements using the best match – the LET 𝑘𝑟(𝑆𝑤) case – 

obtained from the 1D heterogeneous model and statistically 

compare the simulated and experimental responses on fluid 

saturation. 

The measured and predicted saturation distributions are 

shown in Fig. 7 (a) and (b) for the decane-brine and (e) and (f) 

for CO2-brine displacement. For better comparison, the 1D 

projection, i.e., the resulting 1D saturation profiles, are 

plotted in Fig. 5 (c) and (f) together with the experimental and 

1D-derived saturation profiles. The match of the 3D results to 

the 1D and experimental projected saturation profiles is 

reasonable, considering that it is not the result of a history 

match but a forward simulation. The ∆𝑃 and the cumulative 

brine production are comparable to the responses of the 1D 

heterogeneous results with the same limitations around the 

breakthrough time, as discussed previously. This may be a 

limitation of the capillary pressure scaling method, as one of 

the underlying assumptions of the methodology is that the 

system is in a steady state [7, 42]. 

To better quantify the saturation profile, Fig. 7 (c) to (h) shows 

a statistical comparison of the experimentally determined and 

numerically simulated 3D saturation profiles presented in Fig. 

7 (a) and (b). (c) and (g) show the respective histograms for 

the decane-brine saturation state after 9.8 h and the CO2-brine 

saturation state after 8.8 h of flooding. The data show a 

perfect match over a wide saturation range, which is further 

quantified in the respective correlation plots (d) and (h), 

which are obtained by plotting the simulated saturation of 

each grid block versus the experimentally measured 

saturation. The data show a high degree of correlation with 

correlation coefficients above 0.99 and 0.98 for the decane 

and CO2 cases, respectively. Deviations in the experimentally 

and numerically derived histograms and hence in the 

correlations are predominantly at high-brine phase 

saturations, where the experimental data show saturations 

above one, which is an error in the measurements. However, 

the affected range is not relevant for fluid displacement 

physics. 
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Fig. 7. (a) Measured 3D water saturation profiles after 9.8 h of decane flooding. The flow direction is from left to right. (b) Corresponding 

simulation output. (c) Comparative experimental and simulated water saturation histograms and (d) correlation between simulated and 

experimentally measured saturations. The black line indicates the slope of unity with zero intercept. The red line shows a linear regression to 

the data. Figures (e) to (h) show the same data after 8.9 h of CO2 flooding. 
 

7 Discussion and Conclusions  

In a first attempt to interpret the experimental data, we 

proceeded as in a classical SCAL workflow and assumed the 

simulation domain to be one-dimensional and homogeneous. 

This has the advantage that the stochastic analysis is the same 

as that for the SCAL data, which is numerically too costly for 

heterogeneous systems that are in three dimensions. A simple 

forward simulation using the SCAL data cannot describe the 

experimental data on the next larger scale with a 12× larger 

volume. However, good agreement can be achieved by 

varying the relative permeability except for the complex 

saturation profile, which cannot be described in the frame of 

a homogeneous model. This, of course, has the consequence 

that the relative permeability curves extracted from both 

scales do not match. 

Consideration of the 1D porosity profile and the 

corresponding permeability and capillary scaling is the first 

step in capturing the influence of heterogeneity on two-phase 

flow. However, the use of SCAL data in forward modeling 

still leads to a discrepancy between simulation results and 

experimental responses. However, the experiments can again 

be matched by optimizing the 𝑘𝑟(𝑆𝑤) saturation functions; 

for the decane-brine system, the experimental responses, 

including the saturation profiles, are well described. The 

extracted 𝑘𝑟(𝑆𝑤) and 𝑃𝑐(𝑆𝑤) are close to the SCAL 𝑘𝑟 and 

scaled MICP 𝑃𝑐. A similar picture can be drawn for the CO2-

brine displacement, but the relative CO2 permeability, i.e., 

CO2 mobility, is significantly lower with respect to the SCAL 

standard. However, the data are trustworthy since the SCAL 

data refer to the decane-brine displacement and the CO2-brine 

system may have different wetting behaviors. 

To verify the approach of heterogeneity implementation, the 

displacements were forward simulated in the 3D 

heterogeneous domain using 𝑘𝑟(𝑆𝑤) and 𝑃𝑐(𝑆𝑤) of the best 

match of the 1D heterogeneous model. For both systems, the 

numerical and experimental saturation states show very good 

correlation. The heterogeneous models, even providing a 

good overall description of USS experiments, experience 

deviations from the experimental data around the 

breakthrough time, as evident in all experimental responses. 

The exact reason for this deviation is still an open question 

and is under investigation. 

In this article, the challenges of interpreting multiphase flow 

experiments on laboratory samples of rocks with mm-scale 

heterogeneities are discussed. Practically, it is not yet 

possible to implement such small-scale heterogeneity in 

reservoir simulations where it would be on a subgrid scale. 

The proof that the classic SCAL-derived relative permeability 

is only valid when considering small-scale heterogeneity 

makes SCAL application in reservoir simulation 

questionable. This is especially true for multiscale-

heterogeneous carbonates and CO2-brine displacements with 

its unfortunate mobility contrast. For such complex rocks, 

new concepts are needed. A better choice would be the 

naturally upscaled result of the 1D homogeneous 

interpretation, which describes the system on the scale of 

investigation. However, such data cannot be extracted from 

standard SCAL measurements as performed in the frame of 

field developments and may still be scale dependent. 

Our results demonstrate that simple USS experiments can be 

used to investigate the influence of capillary heterogeneity on 

𝑘𝑟(𝑆𝑤) which is specially valuable for CO2 research since 

CO2 steady state experiments are extremely demanding in 

terms of maintaining fluid phase equilibria during the 

experiment. It further shows that a rigorous upscaling 
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procedure including rock heterogeneity on various scales is 

needed to use standard workflows such as special core 

analysis for CCS developments in carbonates. 
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