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Abstract. To make efficient use of image-based rock physics workflow, it is necessary to optimize different 

criteria, among which: quantity, representativeness, size and resolution. Advances in artificial intelligence 

give insights of databases potential. Deep learning methods not only enable to classify rock images, but could 

also help to estimate their petrophysical properties. In this study we prepare a set of thousands high-resolution 

3D images captured in a set of four reservoir rock samples as a base for learning and training. The Voxilon 

software computes numerical petrophysical analysis. We identify different descriptors directly from 3D 

images used as inputs. We use convolutional neural network modelling with supervised training using 

TensorFlow framework. Using approximately fifteen thousand 2D images to drive the classification network, 

the test on thousand unseen images shows any error of rock type misclassification. The porosity trend provides 

good fit between digital benchmark datasets and machine learning tests. In a few minutes, database screening 

classifies carbonates and sandstones images and associates the porosity values and distribution. This work 

aims at conveying the potential of deep learning method in reservoir characterization to petroleum research, 

to illustrate how a smart image-based rock physics database at industrial scale can swiftly give access to rock 

properties. 

Introduction 
Digital rock analysis recently becomes an important part 

of the laboratory services in oil and gas industry. 

Numerical properties accelerate and improve the 

understanding of the reservoir behavior. 

 Computed tomography scans from rocks associated 

with Digital Rock Physics (DRP) analysis receives 

considerable and extended use in the oil and gas 

laboratory services. Computed micro-tomography (MCT) 

scans of rocks record multiple structural information such 

as the texture and the rock fabric. A 3D image of a rock 

sample gives access to the actual representation of the 

mineral phase and the pore space. Rock images with voxel 

size down to the micrometer resolution allow to extract 

the topology of the pore space. Once segmented in two 

(usually pore and solid) or more phases of interest, the 

MCT images can be used to simulate porous media 

physical properties such as fluids transport, electrical and 

geo-mechanical properties as well as processes like 

enhanced oil recovery simulation [1, 2]. Ongoing 

improvements in MCT systems and image analysis 

software quickly provide increasing amounts of data. 

Properties computed from rock images accelerate and 

improve the understanding of the reservoir behavior. 

 In DRP analysis, key elements are the voxel size and 

the representative elementary volume (REV) determined 

during the acquisition phase. A too low image resolution 

can restrict the pore space reconstruction, causing bad 

pore space topology determination and rock properties 

estimation as demonstrated in [3]. Al-Raoush [4] and 

Papadopoulos reveals that the minimal REV for particle 

size distribution and coordination number is larger than 

the minimal REV for porosity. This technical restriction 

results in a permanent search of increasing resolution and 

volume size of the acquired images. At the same time the 

constant progress of acquisition technique leads to more 

and more image acquisition generating dozen terabytes of 

data needing to be processed afterward. As a 

consequence, standard image processing techniques 

become more and more limited and need to be automated 

to work with an efficient workflow. 

 Recent advances in high performance computing and 

machine learning (ML) will probably lead to new and 

more efficient computations. At the present time, research 

carried out on deep learning produces various frameworks 

easily accessible that particularly democratize its uses. 

Deep neural network provides excellent results for X-ray 

computed tomography (Wang [5], Würfl et al. [6]). 

Convolution neural network (CNN) is an important deep 

learning architecture. It can extract the image features 

automatically and has high classification accuracy. CNNs 

have achieved a wide range of applications such as plant 

classification, face recognition, handwritten Chinese 

character recognition and so on Mikia et al. [7] and Lopes 

et al. [8]. 
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 Naranjo Leon et al. [9] provided a permeability-

porosity relationship for each rock type, allowing to 

complement the reservoir characterization in the un-cored 

wells. Chen et al. [10] demonstrated the capability of 

machine learning in rock facies classification from 

wireline log scalar attributes improving by feature 

augmentation. Compared to conventional image 

segmentation methods, machine-learning segmentation 

could come closer to the ground truth for determining the 

porosity from noisy MCT images (Berg et al. [11]). 

Karimpouli [12] and Tahmasebi revealed that a CNN 

algorithm improves the accuracy of a segmentation 

comparing with a multiphase thresholding segmentation. 

Their network also produced valid results for unseen 

images with a categorical accuracy of about 96%. Araya-

Polo et al. [13] used a deep learning architecture to 

instantaneously predict permeability of clastic rocks from 

high resolution Scanning Electron Microscopy images. 

Sudakov et al. [14] validated a 3D CNN method for 

predicting permeability of digital Berea sandstone volume 

subsets.  

 In this study we pursue tests on the CNN potential for 

DRP predictions. We provide some proofs of concept and 

discuss how they could be designed to be integrated in a 

more global usual analysis workflow. The typical size of 

a MCT image, a few dozen gigabytes, is huge in 

comparison to hardware capacity (some gigabytes for 

GPU) and time consuming. That is why the CNN is 

relevant to emphasize relevant features with a reasonable 

time and standard computing resources. 

 The goal of this study is thus to explore and evaluate 

the contribution of machine learning as a tool to evaluate 

geological and petrophysical properties directly from 

grayscale MCT scan images. The purpose is to deploy an 

automated workflow directly after the reconstruction of 

3D rock images.  

 The paper is organized as follow: we first introduce 

the basics of CNN algorithms and the selected image 

database used for this study. Second, we present the 

classification of reservoir sedimentary rock types from 

grayscale MCT images using an adapted version of the 

Inception-V3 network, named RockClass model. Then an 

optimized regression-CNN network, named RegPhi 

model, is used to estimate the total porosity from MCT 

scan images without segmentation. The porosity is 

evaluated thanks to an AutoEncoder model realizing an 

automated segmentation from the grayscale images and 

associating the total porosity. Finally, the results are 

discussed. 

Workflow description 

Machine learning concepts 

Convolutional neural networks (CNNs) are a powerful 

tool widely used in various computer vision problems, 

like image classification [15], object detection [16], 

segmentation [17] and image enhancement. As 

convolutional networks assume that pixels that are close 

to one another are semantically related, they seem a good 

candidate to extract physical properties from MCT 

images. 

 During the last decade, many network architectures 

(types of layers, size of layers, interconnexion of layers) 

have been experimented. In this paper, we use 3 types of 

networks. 

 The first one is a customization of the Inception-V3 

network as presented in [18] developed by Google to 

solve the ImageNet Large Scale Visual Recognition 

Challenge [19]. This network has been trained on a very 

large dataset (1.2 million 2D 299 x 299 images) and is 

able to classify 1,000 kinds of images. The output of the 

network is a vector of probabilities for the image to belong 

to a specific class. 

 Then we use a network proposed by Sudakov et al. 

[14] to estimate the porosity from a MCT image. This 

network has fewer layers than Inception-V3 but is able to 

accept 3D 100 x 100 x 100 voxel images. Instead of 

providing a classification, this network is trained to fit a 

function (porosity in our case). The output of the network 

is a scalar. 

 Finally, an AutoEncoder (or encoder-decoder) 

network is used to produce a pixel-wise output. The key 

idea is to extract a relatively small set of features 

(bottleneck) from the input image data and then decode 

those features into the desired output.  

Although this kind of CNNs is able to model complicated 

phenomena due to a large number of parameters, it is still 

hard to predict the behavior of neural network on 

“unfamiliar” test examples. There are various techniques 

to overcome this difficulty: for instance, semi-supervised 

learning where a mathematical model is incorporated into 

CNN architecture or loss function as demonstrated in [20 

– 22]. 

Dataset 

The petroleum reservoir rocks are widely composed of 

two main lithological classes, sandstones and carbonates 

[23]. The original database is made of a series of reservoir 

analogue samples including 2 carbonates from Estaillades 

[24, 25] and Savonnieres [26-28] formations, and 2 

sandstones from Fontainebleau [29, 25] and Berea [30-33] 

formations. For each sample, the rock type and the rock 

formation are notified in the generated database which 

will provide the predicted class of rock type. 

 See below Table 1 for a description and illustrations 

of the image collection. 

 The core plugs are imaged in 3D with a voxel size of 

3 to 4 µm. Having the same voxel size ensures a consistent 

learning of the patterns. This voxel size proposed by most 

of micro-CT scanners is commonly used for imaging rock 

porous media. 3-µm voxel size enables the internal fine 

structures to be imaged accurately, though this is the limit 

between macropore and micropore for the Estaillades 

sample. Although it remains a challenge to accurately 

predict porosity from subresolved imaged porous media, 

we choose to disregard the porosity resolution influence 

(Saxena et al. [34]). We use only 2-phase segmentation 

which totally ignores the subresolved porosity. The 2-

phase segmentation handed by an expert user reflects the 



 

most common arbitrary segmentation and its known 

sensibility. 

Sub-resolution porosity involves low contrast and blurred 

limits between the different phases, which can partly 

cause a dispersion of the results. These segmented images 

are taken as references for the training network predicting 

the porosity. The goal is to try to predict an estimation 

based on particular subjective expert appreciation, which 

may differ from the ground truth porosity. For 

monomineral sample, it is possible to take into account 

grey levels reported to microporosity thanks to a mean 

grey segmentation method [25]. 

  

 

Table 1: List of the selected rock images, a collection based on sandstones and carbonates, associated to the CT image information 

and to the lab and computed basic measurements. 

Rock type 

& formation 

Lab measurements Cross-section of the CT image, 

CT image information and Property estimations 

Carbonate 

Estaillades 

Porosity: 25% 

Permeability: 273 mD 

 

Voxel size: 3.1 µm 

Image size: 1000 x 1000 x 1000 

voxels 

 

Porosity: 15% 

Permeability: 475 mD 

Carbonate 

Savonnieres 

Porosity: 22% 

Permeability: 115 mD 

 

Voxel size: 3.8 µm 

Image size: 1000 x 1000 x 1000 

voxels 

 

Porosity: 22% 

Permeability: 50  mD 

Sandstone 

Berea 

Porosity: 20% 

Permeability: 500 mD 

[35] 

 

Voxel size: 3.2 µm 

Image size: 1000 x 1000 x 1000 

voxels 

 

Porosity: 21% 

Permeability: 620 mD 



 

Sandstone 

Fontainebleau 

Porosity: 12% 

Permeability: 320 mD 

 

Voxel size: 3.2 µm 

Image size: 1000 x 1000 x 1000 

voxels 

 

Porosity: 12% 

Permeability: 380 mD 

  

 Voxaya’s software Voxilon [36] is used to extract a 

dataset of 18 images of size up to 1000 x 1000 x 1000 

voxels from those 4 digital plugs. An expert user 

generates the 3D binary segmented images by selecting 

the threshold values. The total porosity and absolute 

permeability are computed from each segmented image. 

From these large blocks, small 100 x 100 x 100 voxels 

non-overlapping images are extracted using Python 

scripting tools [36], leading to a database with more than 

36,000 images (18,000 CT and 18,000 segmented). For 

each segmented image, related pore volume fraction, 

related permeability and tortuosity are computed, the last 

two properties not being presented in this paper. For each 

study, part of the database is used for training and some 

data is always kept aside for evaluation (training 

assessment) and testing (model assessment). 

Rock classification 
Convolution neural network (CNN) can automatically 

extract image features and presents high classify 

accuracy. 

 The goal is to prove that the rock types and formations 

classification can be realized using existing technologies 

for image classification. 

Network architecture 

Here we choose to use the pre-trained Inception version 3 

(Inception-V3) model specialized in 2D image 

classification by feature extraction, provided by the 

TensorFlow framework. This network is quite optimized 

and contains 48 layers (see Figure 1 below). A specialized 

algorithm for training is designed to overcome the 

limitations of usual algorithms. 

 

 

 

Transfer Learning Concept 

 

All the power of the inception approach lives in the 

Transfer Learning concept. The inception network model 

is a complex network, so training the model directly from 

the beginning would cost at least a few days. However, 

using the method of Transfer Learning, the parameters of 

the first layers are kept unchanged and only the last layer 

from the network is adapted to the use case and trained. 

The last layer is a softmax classifier, a mathematical 

function which outputs a probability distribution [37]. The 

porosity for a patch 100 x 100 x 100 is individually 

estimated. To evaluate the porosity for the whole rock 

sample one could compute porosity for every patch and 

average the result. It is replaced by a layer with as many 

neurons as there are classes to choose from. The network 

has to be retrained to update the weights of this layer using 

a back propagation algorithm and the cross entropy loss 

function. In our case, we use 4 classes: Berea, 

Fontainebleau, Estaillades and Savonnieres. 

Training 

As input data, we use 4,000 grayscale 2D slices (1,000 per 

class) resized to be compatible with the network (initially 

1000 x 1000 resized to 299 x 299) and rescaled between 

0 and 1.0. Training duration is about 6 minutes on a 32 

cores Intel Xeon(R) CPU E5-2667 v3 @ 3.20GHz system. 

Results 

For testing, 1,200 slices (300 slices per class) from images 

were analyzed and the computation took 64 seconds. 

Eventually the data for testing reveals a final accuracy of 

100% for the selected rock typing classification. 

Recognition between the 2 lithological rock types 

(sandstone and carbonate) is 100% and recognition of the 

4 rock formations is also 100%. 
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Figure 1: Inception V3 architecture (source: Google codelabs). 

Porosity estimation 

Porosity from CT scan without segmentation 

In this paper we try to predict porosity from grayscale 3D 

images. Araya et al. [13] already used grayscale SEM 

image as input for DL-based permeability predictions 

avoiding the segmentation, the highest sensitive step 

linked to the resolution, and speeding-up processing 

workflows. 

 Following that work, we focus on the Berea sandstone 

sample for training and prediction imaged in 3D. For the 

network architecture we take inspiration from Sudakov et 

al. [14]. Using this network, the authors try to predict 

permeability by Linear Regression and CNN from 

segmented images. Our model RegPhi is implemented 

using the Keras framework [38] and is described in Table 

2. 

Training 

In our study we use non-overlapping sub-blocks (100 x 

100 x 100 voxels) from 2 Bera CT images. We have 8,000 

of these sub-blocks, 3,500 being used for training while 

keeping 600 blocks for validation. 

 

Table 2: The RegPhi Network Architecture. 

Layer type Parameters 

3D Convolution 

[ filters=32, kernel_size=(5, 5, 5), 

strides=(2,2,2), padding='valid', 

activation='relu') ] 

3D Convolution 

[ filters=32, kernel_size=(5, 5, 5), 

strides=(2,2,2), padding='valid', 

activation='relu') ] 

3D Max Pooling [ pool_size=(2, 2, 2) ] 

3D Convolution 
[ filters=32, kernel_size=(3, 3, 3), 

padding='valid', activation='relu' ] 

3D Convolution 
[ filters=32, kernel_size=(3, 3, 3), 

padding='valid', activation='relu' ] 

3D Max Pooling 
[ filters=32, kernel_size=(3, 3, 3), 

padding='valid', activation='relu' ] 

Dense [ units=128, activation='relu' ] 

Dense [ units=64, activation='relu' ] 

Flatten  

Dense [ units=1 ] 

Results 

Figure 2 shows the distribution of the relative error on 

porosity prediction compared to the reference. 

𝐸𝑟𝑟𝑜𝑟 =  100 ∗  | 𝜑𝑅𝑒𝑔𝑃ℎ𝑖

− 𝜑𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  | / 𝜑𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒    

 These predictions are realized on a set of 1,000 sub-

blocks of 100 x 100 x 100 voxels from grayscale Berea 

sandstone images without any segmentation or 

improvement process. We use a REV-independent 

approach in order to provide prediction on large amount 

of images. Here we can see encouraging results about the 

porosity prediction, the median of the series is under 15% 

despite a mean relative error of 18% (see Figure 3).  

 

Figure 2: Distribution of absolute error for porosity prediction 

in percentage from the same Berea sandstone image. 
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Figure 3: Corresponding box plot of absolute error for porosity 

prediction in percentage from the same Berea sandstone image.  

Porosity from automated segmentation 

Network architecture 

In this work, we propose an AutoEncoder network that 

segments pores in 3D rock images (see Figure 4 for a 

detailed description of the network architecture). 

 The idea is to compute the high-level features from the 

input 3D volume that already contain information about 

porosity in the training example and then decode those 

features into the segmentation mask, where every value 

corresponds to the probability of the voxel being a pore. 

To make sure that the bottleneck layer captures 

information about porosity, we predict it as an additional 

pathway in the decoder. We believe that this type of 

guidance helps the network to cope well with the 

segmentation task since it already takes the porosity into 

account while decoding. 

 Theoretically speaking, we should have trained 

network with the loss function for porosity and without. 

Nevertheless we could in general argue that some 

guidance for the bottleneck is shown to be a promising 

technique in deep learning. For instance, variational 

autoencoders are good example how this type of guidance 

improves the robustness of classification problem (Pu et 

al. [39]). 

 

 
Figure 4: Network architecture with 12 convolutional layers, bottleneck, and 12 corresponding upsampling layers. The layers are 

organized in 4 blocks with 3 layers each. On top of the encoder part, we show the number of features after each layer. On the bottom 

of the encoder, we show the tensor size. With dashed lines, we illustrate skip connections [40], where encoder features are copied to 

the corresponding decoder layers. This helps to bring small details that were lost after downscaling. The decoder part has two pathways, 

the first one recovers the segmentation mask and the second one computes the porosity. 

Computational framework 

The input data of the network is a set of grayscale CT 

image volumes of dimension 100 x 100 x 100 voxels. 

Larger images are segmented into these patches, so that 

our network can deal with input data of any shape. 

 The basic ingredients for the encoders and decoders 

are residual blocks. To decrease resolution, we employ 

strided convolutions with stride 2, so that our network is 

fully convolutional. The choice of this architecture is well 

supported in the literature [41, 42] as it allows to speed up 

the training process and deals with “vanishing gradients”, 

which is a common problem in deep learning. The 

residual blocks have a very simple structure and allow 

direct pass-through of the batch normalized input, see 

Figure 4. 

 In the encoder pathway, four groups of three residual 

blocks are chained together, 12 blocks in total. In the first 

three groups, every third block reduces the patch 

resolution via strided convolution while increasing feature 

depth, with the overall goal of gradually reducing 

dimensionality. Others keep spatial resolution the same 

while increasing the number of features. In the last group, 

both blocks decrease spatial resolution such that the 

output shape is 3 x 3 x 3 x 192, see Figure 4. The feature 

output at the representation level is concatenated. This is 

the final output of the encoder, and the bottleneck of the 

network. 

 After passing the bottleneck, the low-dimensional 

representation is decoded again by a chain of residual 



 

layers. The latent variables enter two decoder pathways. 

One is the path that predicts the porosity and another one 

outputs the segmentation mask. Decoder pathways that 

lead to the segmented 3D volume use transposed 

convolutions to exactly revert the encoder on the 

corresponding level. However, the only link between 

them is through the latent representation and skip 

connections, see Figure 5. To prevent overfitting, we 

apply dropout layers on the bottleneck with 0.2 

probability of each node to be discarded. 

  

Figure 5: Single residual block of the encoder and decoder networks. After batch normalization, a first path leads through a (possibly 

strided) convolution or up-sampling layer and a leaky ReLU. A second path either keeps the input or passes it through a strided 

(transposed) convolution in case it needs to be resampled. Both paths are added together to produce the final output. In the decoder 

block we skip connect the corresponding encoder features to the output of the decoder. The idea is that it is much easier for such blocks 

to learn the identity transformation, or perform only small modifications to the input [42], which helps the encoder-decoder paths to 

gradually add details. 

Loss function 

In the classical supervised machine learning used to train 

the model, we need training data together with a label or 

target. By observing the random variable 𝑋 and its label 𝑌 

in the training set, the supervised learning tries to fit the 

model 𝑓 to the training samples (𝑥0, 𝑦0), . . . , (𝑥𝑛 , 𝑦𝑛). 

 Test data has similar structure as training data, but the 

network never sees it. 

 The training process can be considered as learning the 

mapping 𝑓 to predict label 𝑦∗ from the new instance 

(𝑥∗, 𝑦∗) of the test data via 𝑓( 𝑥∗)  =  𝑦∗. 
 A typical cost function for image classification and 

segmentation tasks is cross-entropy with logits. 

 Let p(𝑥𝑖) = 𝑓(𝑥𝑖) be the probability that point 𝑥𝑖 is a 

pore. Thus 𝑝(𝑥𝑖)  ∈ [0,1] with 𝑝(𝑥𝑖) close to 0 if the 

probability is low. The cross-entropy between 𝑝(𝑥) and 𝑦  

is given by: 

𝐸𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑝)  =  −∑𝑖 ∈ 𝛺𝑦𝑖 𝑙𝑜𝑔 (𝑝(𝑥𝑖))       (1)   

with 𝛺 being a set of all points in the training example. 

 In order to predict the porosity from the bottleneck, we 

use the standard mean squared error (MSE): 

𝐸𝑀𝑆𝐸  = ||ɸ𝑦  − ɸ𝑒||2                         (2) 

where ɸ𝑦 denotes the target porosity and ɸ𝑒 is the 

predicted porosity computed at the bottleneck level. 

 Finally, to link the predicted porosity ɸ𝑒 and final 

output we compute ɸ𝑜𝑢𝑡  = ∑𝑖 ∈𝛺 𝑝(𝑥𝑖)/|𝛺| and 

introduce another loss function: 

𝐸𝑚𝑜𝑑𝑒𝑙  =  ||ɸ𝑜𝑢𝑡  − ɸ𝑒||2                   (3) 

that ensures that the porosity computed from the 

segmentation mask equals the predicted porosity obtained 

from the bottleneck features. 

 Final loss function is the sum of the previously defined 

loss functions (1), (2) and (3): 

𝐸 =  𝐸𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦  +  𝐸𝑀𝑆𝐸  + 𝐸𝑚𝑜𝑑𝑒𝑙           (4) 

Training the CNN model 

From the training data, we leave aside 10% for a 

validation set whereas the rest is used for training. Several 

images are also completely held back and used only for 

testing. We implement the network using TensorFlow in 

Python3, and train it on an Intel Xeon(R) CPU E5-2667 

v3 @ 3.20GHz system with one Nvidia Quadro M6000. 

Weights are initialized using the same strategy as for 

residual networks [40]. Stochastic optimization using the 

Adam optimizer [43] took roughly two days, after which 

loss remained stable. We train with batch size 10 and 

learning rate 1-e4. Reconstruction of a single pathway 

during evaluation requires about 0.5 - 1.5 seconds for the 

3D volume of size 100 x 100 x 100. The complete 

segmentation of a 1000 x 1000 x 1000 voxels image takes 

about 15 - 20 minutes. 

Results 

Figures 6 and 7 show the source CT image and resulting 

segmentations using Hysteresis segmentation and the 

AutoEncoder network. Globally, AutoEncoder 



 

segmentations tend to be sharper than the binary 

thresholding but also thinner (one voxel difference on the 

boundaries). Thus, porosity computed on the 

AutoEncoder images will always be smaller than the 

reference obtained by Hysteresis segmentation. 

 

CT image Reference 
AutoEncoder 

segmentation 

 
Cross-section 

 
Cross-section 

segmented 

image 

 
Cross-section 

segmented 

image 

 
3D volume 

 
3D volume of 

pore space 

 
3D volume of 

pore space 

 Computed 

porosity volume: 

20% 

Computed 

porosity volume: 

15% 

Figure 6: Comparison between Hysteresis segmentation 

(Reference) and AutoEncoder model methods: original CT 

image in grayscale, segmented image with black pixels for pore 

and greyish for solid. 

 

A)  B)  

Figure 7: Cross-section (A) and 3D volume (B) images resulted 

from the comparison of segmentation methods: Hysteresis 

segmentation and AutoEncoder model. The black voxels are 

joint porosity of both segmentations and dark grey voxels are 

supplementary pore voxels in the Hysteresis segmentation. 

Discussion and perspectives 

Computing resources 

The most time-consuming task is the training part of the 

networks. GPU runs (using one Nvidia Quadro M6000 

graphics card) are 15 faster than CPU runs (on a 32 cores 

Intel Xeon workstation). 

Rock classification 

In this study, 4 classes of lithological rock formations are 

distinguished with a highly successful recognition rate. 

 This work will be extended to numerous classes of 

reservoir rock facies. All authors [4, 10, 12, 14] referring 

to machine learning mentioned the importance of the 

quality of the dataset and required a massive amount of 

data. This database generation with various available 

reservoir rock formations imaged at several voxel sizes 

will be a crucial step. 

 Rock classification using Inception-V3 (RockClass) 

proves to be a very promising tool. It can be used for pre-

calibrating geological-oriented workflow in digital rock 

analysis proposing a suitable image processing and 

analysis workflow. The classification rate could be used 

as a quality control indicator for validating the image 

quality before any numerical computations. Then a rock 

class recognition is interesting to offer a fast estimation of 

the numerical properties already processed from similar 

rock class. 

 To further improve digital rock classification, 

additional physical attributes as mineralogy and pore 

fabric could probably enhance RockClass capability in 

detailing geological rock types. For example, pore fabric 

is directly related to the hydraulic radius size distribution, 

which is the key parameter for the permeability 

computation. 

Porosity estimation 

The porosity is computed on 1,000 sub-blocks of 100 x 

100 x 100 voxels by 3 porosity modules: Hysteresis 

segmentation, RegPhi an AutoEncoder networks.  

 The porosities estimated from Hysteresis 

segmentation are used as reference values. They are 

computed from segmented images obtained by binary 

thresholding. Porosity estimation obtained by Hysteresis 

segmentation is benchmarked and validated in several 

studies with diverse partners (IFPEN, Geosciences 

Montpellier, [2]).  

 Figure 8 illustrates the porosity distribution obtained 

by these 3 methods on 1,000 juxtaposed blocks of size 100 

x 100 x 100 voxels belonging to the same 1000 x 1000 x 

1000 voxels image. 

 



 

Figure 8: Porosity distribution computed by image analysis 

(reference), RegPhi and AutoEncoder models for Berea 

Sandstone sub-blocks. 

 The reference porosity values indicate that the 

porosity ranges from 9 to 36% with a mean value of 

21.5%. This large distribution is mostly due to variation 

of the pore-solid ratio along the series of small REV of 

100 x 100 x 100 voxels with a high voxel size. The RegPhi 

and AutoEncoder results present a wider porosity 

distribution, respectively, from 8 to 41% with a mean 

value of 18.6% and from 8 to 37% with a mean value of 

18.8%. The AutoEncoder model is considered being a 

more reliable network for predicting porosity values close 

to the values obtained by conventional image analysis. 

 RegPhi model allows to estimate the porosity without 

segmentation whereas AutoEncoder generates a 

segmented image to assess the porosity. Both networks 

seem to predict similar porosity distributions and from 

2.7% (AutoEncoder) to 2.9% (RegPhi) under evaluate the 

porosity compared to the reference one. This promising 

result validates improbable capabilities of both models to 

evaluate porosity directly from grayscale images. An 

intensified training is required to enhance their 

performance. 

 RegPhi and AutoEncoder networks are both trained on 

these similar subs-volumes of Berea grayscale image. 

This similarity of results demonstrates how efficient and 

accurate segmented images are generated by the 

AutoEncoder model in this study. From these automated 

segmented images, series of numerical petrophysical 

properties could be swiftly computed. A complete digital 

petrophysical workflow can thus be proposed, here for 

Berea sandstone. 

Conclusion 
In this study we aim at demonstrating the potential of 

neural network algorithms to make digital rock analysis 

simple. We work on implementing an automated 

workflow from MCT images to digital petrophysical 

measurements without operator intervention. 

 The numerical petrophysics workflow is based on a 3-

step approach. First, a rock classification from grayscale 

MCT images using RockClass model is investigated in the 

two main lithological rock reservoirs types, carbonates 

and sandstones. Then RegPhi model is used to predict the 

total porosity from grayscale MCT images. 

 An AutoEncoder network allows to automatically 

generate the pore space segmented image and then 

evaluate the total porosity. 

 The results of this study are not limited to 4 reservoir 

rock classes and porosity estimation, but the proposed 

workflow can be adapted for any CT rock types in order 

to deliver a complete series of numerical analysis. 
 

This work was supported by the ERC Starting Grant ``Light 

Field Imaging and Analysis'' (LIA 336978, FP7-2014). 
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