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ABSTRACT 
Miscible recovery techniques are among the most efficient and widely used enhanced oil 
recovery methods both in conventional and in heavy oil reservoirs (miscible gas flooding 
and solvent injection, respectively). The efficiency of a miscible flood is significantly 
dependent on the degree of mixing that occurs between the fluids.  Mixing of the injected 
gas/solvent with oil leads to solvent dilution and thus reduces the effective strength of 
miscible displacement. The primary mechanisms of miscible mixing in pore space are 
molecular diffusion and convection (mechanical spreading) due to bulk flow velocity. 
The combined effect of these two mechanisms on the degree of mixing can be 
characterized by the dispersion coefficient.  Laboratory measurement of this parameter is 
difficult due to the fact that it is strongly dependent on flow and porous media properties. 
An alternative approach is to numerically calculate dispersion coefficient using pore scale 
digital core analysis. In this study, pore level miscible displacements in heterogeneous 
porous media are computationally modeled through simultaneous solving of Navier-
Stokes, Continuity, and Convection-Diffusion equations on virtual unconsolidated 
granular porous media. These virtual media are constructed by a pattern generator using 
the concept of random packing of grains. The heterogeneity level of these media is 
characterized by a coefficient of variations defined as the ratio of standard deviation in 
grain diameter to the mean grain diameter. Using the results of numerical simulations, 
longitudinal (along the flow direction) dispersion coefficient is calculated at different 
values of flow velocity, viscosity ratio, and pore scale medium heterogeneity.  The input 
diffusion coefficients are either constant or functions of concentration.  The results of the 
simulations show that when viscosity ratio is unity, at very low Peclet numbers the 
dominant transport mechanism is molecular diffusion. At high Peclet numbers, however, 
advection is dominant and the magnitude of longitudinal dispersion coefficient scales 
with 𝑁!!.!. Higher heterogeneity of media will results in higher values of longitudinal 
dispersion coefficient. Also, it is found that using an appropriate average diffusion 
coefficient over the range of concertation interval can adequately account for 
concentration dependency of diffusion coefficient. The effect of viscosity contrast on 
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longitudinal dispersion coefficient is shown to be significant. Viscous fingering due to an 
unfavorable viscosity ratio leads to higher values for longitudinal dispersion coefficient.  
 
INTRODUCTION 
Miscible displacement and mixing of fluids in porous media is of fundamental 
importance in many natural processes and engineering applications, including but not 
limited to enhanced oil recovery [1,2], environmental remediation [3-6], and CO2 
sequestration [7]. Fluids mixing in porous media is the combined result of molecular 
diffusion due to Brownian motion of fluid particles, as well as mechanical dispersion 
caused by interstitial flow velocity and its variations (both in magnitude and direction) 
due to medium heterogeneity.  
 
The level of mixing in porous media is generally quantified by dispersion coefficient. In 
the past, dispersion coefficient has been used extensively to quantify the degree of mixing 
during miscible flows in porous media, both theoretically and experimentally. Taylor [8] 
and later Aris [9,10] investigated the viscous flow of a soluble matter in a fluid flowing 
through a straight circular capillary tube and theoretically described the degree of mixing 
by an effective dispersion coefficient. Brigham et al. [11] used glass bead packs and 
natural cores to investigate the effect of various parameters on the dispersion coefficient 
and degree of mixing through miscible displacement experiments. Perkins and Johnston 
[12] discussed the effect of molecular diffusion and dispersion on miscible flows and 
summarized information and interpretations from previous literature on miscible fluids. 
Coelho et al. [13] numerically obtained the values of dispersion coefficient in random 
spherical packings and concluded that their results were in a good agreement with 
experiments in consolidated sandpacks and sands. Transient and asymptotic dispersion 
coefficients have been calculated in regular and random sphere packings by using 
random-walk particle tracking and Lattice-Boltzmann methods to model solute transport 
and fluid flow, respectively [14]. Bijeljic et al. [15] used pore scale network simulation to 
calculate dispersion coefficient in a diamond lattice of throats representing Berea 
sandstone. Beard and Wu [16] presented an analytical dispersion coefficient for the flow 
of solute inside a system of capillary tubes with randomly assigned velocities. Pore scale 
simulations also have been used to study dispersion phenomena in porous media. Garmeh 
et al. [17] explored different aspects of mixing in porous media by numerical simulations 
at the pore scale in series and layered heterogeneous porous media constructed by 
different arrangements of circular grains. Their numerical results were in agreement with 
classical relationship between dispersion coefficient and velocity reported by [12]. 
Mostaghimi et al. [18] used direct images of porous media obtained from microcomputed 
tomography scan of rock cores and simulated flow and transport on these images using a 
Stokes solver for flow modeling and a streamline-based algorithm for solute transport. 
They were able to accurately predict the available data for longitudinal dispersion 
coefficient in the literature. Taheri et al. [19] developed a sub pore scale modeling 
approach based on numerical methods and investigated the values of dispersion 
coefficient during miscible displacement in several images of micro-models with 
different properties.  
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The rate of mixing and magnitude of dispersion coefficient during miscible displacement 
in porous media is strongly dependent on medium heterogeneity and viscosity ratio of 
fluids. Presence of microscale/macroscale heterogeneities results in preferred paths for 
fluid particles to move and thus channeling of flow. An unfavorable viscosity ratio also 
gives rise to instabilities at the leading edge of concentration profile and subsequently 
results in viscous fingering. This heterogeneity induced channeling and viscous fingering 
will increase the size of miscible mixing zone and consequently the magnitude of 
dispersion coefficient. The experimental works of [20] and [21] on glass bead columns 
demonstrated that increasing the variance of bead size resulted in higher dispersion rates. 
Experimental study of dispersion tests by [11] on random bead packs showed that higher 
dispersion coefficients were encountered during flow and transport at higher viscosity 
ratios. Bretz et al. [22] used thin sections to analyze porous medium heterogeneity and 
experimentally measured higher dispersion coefficient for wider pore size distributions. 
Numerical simulations of [23] and [24] on heterogeneous permeability fields 
demonstrated that increasing macroscale heterogeneity of medium in terms of Dykstra-
Parson’s (DP) coefficient will lead to higher dispersion coefficients. Garmeh and Johns 
[25] conducted numerical simulations of miscible displacement on correlated 
permeability fields to predict the values of dispersivities (dispersion coefficient 
normalized by flow velocity) at different levels of macroscale medium heterogeneity and 
viscosity ratio. They concluded that an increase in medium’s heterogeneity (in terms of 
DP coefficient) and viscosity ratio results in higher values of dispersivity.  
 
In this study, miscible displacements in two dimensional heterogeneous porous media are 
simulated through simultaneous solving of Navier-Stokes, continuity, and convection-
diffusion equations in pore scale. Two dimensional packings of grains with different 
levels of microscale (local) heterogeneity are reconstructed using a pattern generator 
package developed by [1]. These media are constructed by random packing of circular 
grains with different diameters randomly taken from a particle size distribution (PSD). 
The heterogeneity level of these media is characterized by a coefficient of variations 
defined as the ratio of standard deviation in grain diameter to the mean grain diameter. 
Through this study, the effects of viscosity ratio and pore scale heterogeneity of porous 
media on the values of dispersion coefficient during miscible displacement at different 
Peclet numbers (flow velocities) are investigated. Both constant and concentration-
dependent molecular diffusion coefficients are considered here to investigate how it 
affects the results.  
  
METHODOLOGY 

Governing Equations 
We model miscible displacement in pore scale by solving flow and transport equations 
together. In order to achieve that, three equations of continuity, Navier-Stokes, and 
convection-diffusion (Eqs.1-3, respectively) are solved numerically using commercially 
available code COMSOL multi-physics:  
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    ∇. 𝜌𝐮 = 0            (1) 
        𝜌 !𝐮

!"
+ 𝜌 𝐮.∇ 𝐮 = ∇. −𝑝𝐈+ 𝜇∇𝐮               (2) 

 !"
!"
+ ∇. −𝐷∇𝑐 + 𝐮.∇𝑐 = 0                          (3) 

In the above equations, 𝜌 is mixture density, 𝐮 is pore velocity vector, 𝑝 is pressure, 𝜇 is 
mixture viscosity, 𝑐 denotes the concentration of solute in displacing fluid, and 𝐷 is the 
mutual diffusion coefficient of the fluids. In simulations of this study, both constant and 
concentration dependent diffusion coefficients are employed. To account for 
concentration dependent diffusion coefficient, Vignes’ equation (Eq. 4) is used [26]:   
                                               𝐷 𝑥 = 𝐷!"! ! 𝐷!"! !!! ! !" !!

! !"!
                                       

(4) 
In this equation, 𝑥 is mole fraction of solute (component A), 𝐷!"!  is diffusivity of 
component B in essentially pure component A, and 𝐷!"!  is diffusivity of component A in 
essentially pure component B. The last term in Eq.5 is the activity correction factor which 
assumed to be equal to 1 following the results of [27] at intermediate times of diffusion. 
A quarter power mixing rule for viscosity (Eq.5) is adopted from [28] and implemented 
in the simulations to estimate the mixture viscosity-concentration behavior:  

     𝜇 𝑥 = 𝜇!!!.!" +
!
!!"#

𝜇!!!.!" − 𝜇!!!.!"
!!

         (5) 

The subscripts 1 and 2 denote displaced (in-place) and displacing (injected) fluids, 
respectively. 𝑥!"# is the mole fraction of solute (component A) in the injecting fluid (fluid 
2). Table 1 shows the values of parameters used in the simulations. For constant diffusion 
coefficient a value of 1×10-10 m2/s is assumed for 𝐷. The values of 𝐷!"!  and 𝐷!"!  are 
assumed to be 2×10-9 and 5×10-11 m2/s, respectively. Note that the value for constant 
diffusion coefficient (1×10-10 m2/s) is equal to the average value of 𝐷(𝑥) over the range 
of 𝑥 = 0 to mole fraction of solute in the injecting fluid (𝑥 = 𝑥!"#).  
 
Porous Media Model 
The pore scale representation of heterogeneous porous media is achieved by two 
dimensional packings of circular grains. These media are constructed by random packing 
of circular grains with different diameters randomly taken from a particle size distribution 
(PSD). The heterogeneity level of these media can be characterized by a coefficient of 
variations defined as: 

     𝐶𝑉 =
!!!
!!

                                                            
(6) 

In this definition, 𝑑! is the average particle (grain) diameter and 𝑆!! is the standard 
deviation in diameter (mean and standard deviation of PSD, respectively). Figure 1 shows 
four media with the same average grain diameter and different coefficients of variation 
along with their corresponding PSDs. As it is shown in this figure, a higher value of 𝐶𝑉 
results in a more heterogeneous medium with more irregular pore space. The properties 
of these media are shown in Table 2.  
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The solid-fluid boundary at the grain surface is considered to be no flow/no slip (zero 
velocity) for flow and no flux for transport equations. The boundary conditions at the top 
and bottom boundaries are considered to be symmetrical (zero gradient for velocity and 
concertation). The inlet condition for flow is constant injection velocity while the outlet is 
constant atmospheric pressure. For transport equation, constant concentration inflow is 
imposed on the inlet and outlet boundary condition is assumed to be zero gradient.  
  
Theory of Dispersion 
As stated before, dispersion is the combined effect of molecular diffusion and convective 
spreading in porous media due to variations of velocity field arising from complex 
structure of pore and throats. This phenomenon in porous media at macro-scale and along 
the direction of flow can be described by a convection-dispersion equation as:  
                     !"

!"
+ ∇. −𝐾!∇𝑐 + 𝐮.∇𝑐 = 0                                          (7) 

In this equation 𝐾! is the longitudinal dispersion coefficient. Depending on the values of 
flow velocity, molecular diffusion coefficient, and characteristic length of porous 
medium, different transport regimes may be encountered during miscible flow. These 
transport regimes can be correlated to a dimensionless Peclet number defined as:  

       𝑁! =
!!!
!

                                                          
(8) 

In this definition, 𝑢 is the characteristic velocity and 𝐿! is the characteristic length. For 
random packing of grains, the characteristic length is the average grain diameter and the 
characteristic velocity is considered to be the injection velocity divided by porosity. 
Therefore, a pore-Peclet number can be defined as:  

       𝑁! =
!!"#!!
!"

                                                      (9) 
Following [29], the longitudinal dispersion coefficient normalized by molecular diffusion 
coefficient can be correlated to Peclet number as:  

   !!
!
= !

!!
+ 𝛼𝑁! + 𝛽𝑁!! + 𝛾𝑁!!                                   

(10) 
In this equation, 𝐹 is formation factor and 𝛼, 𝛽, 𝛿, and 𝛾 are correlation parameters. At 
very low Peclet numbers (usually 𝑁! < 0.1, [15]) the dominant transport mechanism is 
pure molecular diffusion. However, because of the presence of solid grains in the path of 
fluid particles, diffusion is restricted compared to the diffusion in a bulk fluid and 
therefore the normalized dispersion coefficient is smaller than unity and is equal to 1/
𝐹𝜙. At higher Peclet numbers, advection is the dominant transport mechanism. If 
advection is the sole mechanism of transport (mechanical dispersion), normalized 
dispersion coefficient scale with 𝑁! (second term on the right hand side of Eq.10). If 
advection is dominant, but still diffusion from the boundary layer near the surface of 
solids is contributing to the transport, normalized diffusion coefficient scales with 𝑁!! 
(third term on the right hand side of Eq.10), where the power law coefficient 𝛿 is usually 
between 1.1 to 1.3 [15] with a value of 1.2 for unconsolidated bead packs [30]. The last 
rem in Eq.10 accounts for hold-up dispersion which occurs due to both diffusion from 
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dead end pores and recirculation. Since in our porous media models usually there is no 
dead end pore, we can assume that there is no hold-up dispersion, so the last term of Eq. 
10 is ignored. The magnitude of dispersion coefficient in a simulated miscible 
displacement can be calculated by matching the numerically obtained effluent 
concentration profile at the outlet with the analytical semi-infinite solution of convection-
dispersion equation [17,19].  
 
RESULTS AND DISCUSSIONS 
We performed several numerical simulations to investigate the effect of injection velocity 
(in terms of 𝑁!), medium pore scale heterogeneity (in terms of 𝐶𝑉), and viscosity ratio of 
displacing and displaced fluids (in terms of log-viscosity ratio, 𝑅 = ln 𝜇!/𝜇! ) on the 
magnitude of dispersion coefficient. Two values of 0 and 3 for log-viscosity ratio are 
considered and simulations are run on the four media of Figure 1 at different pore-Peclet 
numbers.  
 
Case 1: 𝑹 = 𝟎, Constant 𝑫 
The values of longitudinal dispersion coefficient normalized by molecular diffusion 
coefficient are plotted against pore-Peclet number in Figure 2 for the four porous media 
of Figure 1. A power law equation has been fit on the data at high Peclet numbers to 
obtain the value of 𝛿. The results show that  𝛿 ≈ 1.2 which is in agreement with the value 
of 1.2 for unconsolidated bead packs [30]. Also, it seems that 𝛽 is increasing as the 
heterogeneity of medium (𝐶𝑉) is increasing. All of the graphs of Figure 2 are plotted on a 
single graph in Figure 3. It is evident that the magnitude of longitudinal dispersion 
coefficient is higher for more heterogeneous media and this effect of heterogeneity is 
more significant at larger Peclet numbers.  
 
Case 2: 𝑹 = 𝟎, Concentration-Dependent 𝑫 
To explore how the concentration dependency of mutual diffusion coefficient affects the 
performance of miscible displacement, several simulations at unit viscosity ratio are run 
on the four media considered here. Note that the average value of 𝐷(𝑥) in Eq.5 over the 
concentration range of 𝑥 = 0 to mole fraction of solute in the injecting fluid (𝑥 = 𝑥!"#) is 
equal to the constant diffusion coefficient (1×10-10 m2/s) assumed in previous case. The 
reason is to make the results of case 1 and 2 comparable to each other. Also this value of 
average diffusion coefficient is used in definition of pore-Peclet number in Figure 4. This 
figure shows how dispersion coefficient is changing with  𝑁!. The results show that the 
values of dispersion coefficient and the power low trend line are comparable to that of 
case 1 (Figure 2). It implies that using an appropriate average value for diffusion 
coefficient can sufficiently account for the concentration dependency of diffusion 
coefficient.  
 
Case 3: 𝑹 = 𝟑 
Because the results of previous section showed that using an average value of 1×10-10 
m2/s for diffusion coefficient can predict the same results as using Eq.5 and 
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corresponding values of 𝐷!"!  and 𝐷!"!  from Table 1, the simulations of miscible 
displacement at log-mobility ratio of 3 are just performed for the case of constant 
diffusion coefficient. Figure 5 shows the results of the simulations. The development of 
vicious fingering due to unfavorable viscosity contrast enhances the mixing and therefore 
leads to higher values of longitudinal dispersion coefficient compared to results of Figure 
3. Also, at this unfavorable viscosity ratio, the normalized longitudinal dispersion 
coefficient scales with  𝑁! on a log-log plot at all values of  𝑁! > 0.1 (Figure 5). 
 
CONCLUSIONS 
In this study, pore scale simulations of miscible displacement in heterogeneous two 
dimensional packings of grains are conducted to estimate the magnitude of longitudinal 
dispersion coefficient at different values of flow velocity, medium heterogeneity, and 
viscosity ratio. The results of simulations at a unit viscosity ratio show that at very low 
Peclet numbers, diffusion is the dominant mechanism of transport, while at high Peclet 
numbers, transport is advection dominated and dispersion coefficient scales with Peclet 
number by a power law equation. The heterogeneity of packings described as the ratio of 
standard deviation in grain diameter to the mean grain diameter is shown to have an 
impact on dispersion coefficient: more heterogeneous media have higher dispersion 
coefficients. Also, as long as we use an appropriate average value for diffusion 
coefficient, it seems that there is no need to consider the concentration dependency of 
diffusion coefficient. The results of simulations at a higher viscosity ratio demonstrated 
that the occurrence of viscous fingering gives rise to enhanced mixing and therefore 
higher values of dispersion coefficient.   
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Table 1. Parameters used in the simulations 
Parameter name Value 
𝜌! = 𝜌! = 𝜌 1000 kg/m3 

𝑐!"# 1 k-mole/m3 

𝑀! 100 kg/k-mole 
𝑀! 500 kg/k-mole 
𝑥!"# 0.357 
𝜇! 1 and 20 cp 
𝜇! 1 cp 

𝐷 (when assumed to be constant) 1×10-10 m2/s 
𝐷!"!  2×10-9 m2/s 
𝐷!"!  5×10-11 m2/s 
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Table 2. Patterns used in the simulations of this study and their properties 

Name 𝒅𝑷  (𝒎𝒎) 𝑪𝑽 Number of 
Particles 

Length (𝑳) 
(mm) 

Width (𝑾) 
(mm) Porosity  Permeability 

(Darcy) 
C1 0.3 0.13 1200 13.87 6.93 0.240 1.729 
C2 0.3 0.25 1200 14.22 7.11 0.235 2.039 
C3 0.3 0.44 1200 15.13 7.56 0.227 2.650 
C4 0.3 0.53 1200 15.85 7.92 0.253 3.342 

  
a) 𝑑! = 0.3 𝑚𝑚   ,   𝐶𝑉 = 0.13  (medium C1) 

  
b) 𝑑! = 0.3 𝑚𝑚   ,   𝐶𝑉 = 0.25  (medium C2) 

  
c) 𝑑! = 0.3 𝑚𝑚   ,   𝐶𝑉 = 0.44  (medium C3) 
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d) 𝑑! = 0.3 𝑚𝑚   ,   𝐶𝑉 = 0.53  (medium C4) 

Figure 1. Sample media with the same 𝑑! and different 𝐶𝑉 along with their corresponding PSDs  
 

 
a) Medium C1 

 
b) Medium C2 

 
c) Medium C3 

 
d) Medium C4 

Figure 2. Variation of normalized longitudinal dispersion coefficient with pore-Peclet number at 
unit viscosity ratio (𝑅 = 0) and constant diffusion coefficient of 1×10-10 m2/s 
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Figure 3. Effect of medium heterogeneity on longitudinal dispersion coefficient at unit viscosity 
ratio (𝑅 = 0) and constant diffusion coefficient of 1×10-10 m2/s  
 

 
a) Medium C1 

 
b) Medium C2 

 
c) Medium C3 

 
d) Medium C4 

Figure 4. Variation of normalized longitudinal dispersion coefficient with pore-Peclet number at 
unit viscosity ratio (𝑅 = 0) and concentration-dependent diffusion coefficient  
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Figure 5. Variation of normalized longitudinal dispersion coefficient with pore-Peclet number at 
unfavorable viscosity ratio (𝑅 = 3) and constant diffusion coefficient of 1×10-10 m2/s 


